PERSONALIZING PREBIOTIC REGIMENS for ASTRONAUTS

LAWRENCE DAVID

Assistant Professor, Molecular Genetics & Microbiology Associate Director, Duke Microbiome Center **Duke University**

MICROBIOME

• All animals are colonized by microbial communities

MICROBIOME

- All animals are colonized
 by microbial communities
- In humans:
 - ~100 trillion bacteria colonize epithelial surfaces
 - 100 billion bacteria per gram of fecal matter in the colon

GUT MICROBIOME IS DYNAMIC

David et al., *Genome Biol* 2014

DIET CAN BE A WAY TO MANIPULATE

Peter Turnbaugh

• Prebiotics are **indigestible dietary carbohydrates** known to stimulate gut microbiota

 Prebiotics are indigestible dietary carbohydrates known to stimulate gut microbiota

Body Site	Lag (days)	Host factor	Representative OTUs (#)	
	0	Stool:Hardness	Eggerthella/Clostridium(11)	
	0	Stool:TimeOfDay	Eggerthella/Clostridium(11)	0.27
	1	Nutrition:Fiber	Clostridium(6)	-0.38
	1	Nutrition:Fiber	Ruminococcaceae/F.prausnitzii(4)	-0.44
	1	Nutrition:Fiber	Eggerthella/Clostridium(11)	-0.39
	1	Nutrition:Fiber	Ruminococcus/R.gnavus/Clostridium(4)	-0.51
	1	Nutrition:Fiber	Ruminococcus/R.gnavus/Clostridium(5)	-0.51
	1	Nutrition:Fiber	Blautia(3)	-0.38
Subject A Gut	1	Nutrition:Fiber	Bifidobacteriales(13)	0.36
	1	Nutrition:Fiber	Coprococcus(8)	0.44
	1	Nutrition:Fiber	Clostridium(1)	-0.42
	1	Nutrition:Fiber	Ruminococcus/R.gnavus/Clostridium(6)	-0.44
	1	Nutrition:Fiber	Roseburia/E.rectale(30)	0.37
	1	Food:OrangeJuice	Clostridium(1)	0.28
	1	Food:BreakfastBar	Ruminococcus/R.gnavus/Clostridium(4)	-0.27
	1	Food:BreakfastBar	Ruminococcus/R.gnavus/Clostridium(5)	-0.40
	1	Food:BreakfastBar	Bifidobacteriales(13)	0.27
	1	Food:BreakfastBar	Clostridium(1)	-0.43
	1	Food:Yogurt	Bifidobacteriales(2)	0.45
	1	Food:Fruits:Fresh	Clostridiales(4)	-0.27
	1	Food:Fruits:Citrus	Ruminococcaceae/F.prausnitzii(4)	0.36
	1	Food:Soup	Clostridiales(1)	-0.25
	1	Food:Soup	Blautia(21)	-0.26
	1	Food:Soup:Other	Clostridiales(1)	-0.27
	1	Food:Soup:Other	Blautia(21)	-0.28

 Prebiotics are indigestible dietary carbohydrates known to stimulate gut microbiota

Body Site	Lag (days)	Host factor	Representative OTUs (#)	ρ	
0		Stool:Hardness	Eggerthella/Clostridium(11)	-0.30	
	0	Stool:TimeOfDoy Eggorthollo/Clootridium(11)		0.07	
	1	Nutrition:Fiber	Clostridium(6)	-0.38	
	1	Nutrition:Fiber	Ruminococcaceae/F.prausnitzii(4)	-0.44	1
	1	Nutrition:Fiber	Eggerthella/Clostridium(11)	-0.39	ĺ
	1	Nutrition:Fiber	Ruminococcus/R.gnavus/Clostridium(4)	-0.51	ĺ
	1	Nutrition:Fiber	Ruminococcus/R.gnavus/Clostridium(5)	-0.51	
	1	Nutrition:Fiber	Blautia(3)	-0.38	
	1	Nutrition:Fiber	Bifidobacteriales(13)	0.36	
	1	Nutrition:Fiber	Coprococcus(8)	0.44	
	1	Nutrition:Fiber	Clostridium(1)	-0.42	
	1	Nutrition:Fiber	Ruminococcus/R.gnavus/Clostridium(6)	-0.44	
Subject A Gut	t 1				
	1	Food:OrangeJuice	Clostridium(1)	0.28	
	1	Food:BreakfastBar	Ruminococcus/R.gnavus/Clostridium(4)	-0.27	
	1	Food:BreakfastBar	Ruminococcus/R.gnavus/Clostridium(5)	-0.40	
	1	Food:BreakfastBar	Bifidobacteriales(13)	0.27	
	1	Food:BreakfastBar	Clostridium(1)	-0.43	
			0.15		
	1	Food:Fruits:Fresh	Clostridiales(4)	-0.27	
	1	Food:Fruits:Citrus	Ruminococcaceae/F.prausnitzii(4)	0.36	
	1	Food:Soup	Clostridiales(1)	-0.25	
	1	Food:Soup	Blautia(21)	-0.26	
	1	Food:Soup:Other	Clostridiales(1)	-0.27	
	1	Food:Soup:Other	Blautia(21)	-0.28	

- Prebiotics are indigestible dietary carbohydrates known to stimulate gut microbiota
- Of interest because gut microbial fermentation leads to short-chain fatty acids like **butyrate**, a primary energy source for colonic epithelial cells

- Prebiotics are indigestible dietary carbohydrates known to stimulate gut microbiota
- Of interest because gut microbial fermentation leads to short-chain fatty acids like **butyrate**, a primary energy source for colonic epithelial cells
- Also of relevance to spaceflight because shelfstable and tend to originate in plants

• **Dozens** of dietary fiber species exist

Prebiotics: Oligo- and Polysaccharides					
Amylopectin (corn)	Galactomannan	Lichenin	Pullulan		
Amylopectin (potato)	Glucomannan	Lignin	Rhamnogalacturonan I		
Arabinan	Glycogen	Oat spelt xylan	Starch (rice)		
Arabinogalactan	Gum (guar)	Pectic galactan (lupin)	Starch (corn)		
Arabinoxylan (wheat)	Gum (rosin)	Pectic galactan (potato)	Starch (wheat)		
Cellobiose	Heparin	Pectin (apple)	Starch (potato)		
Chitin	Hyaluronan	Pectin (citrus fruit)	Xyloglucan		
Chondroitin sulfate	Inulin	Pectin (citrus peel)	a-cellulose		
Dextran	Laminarin	Polygalacturonate	α-mannan		

- **Dozens** of dietary fiber species exist
- Each may vary in effect

	Butyrate			
Group ^{<i>b</i>}	Before	During	Change (%)	P value
Accessible starch (<i>n</i> = 39)	13 ± 6.1	15 ± 8.3	+13	0.18
Hi-Maize $(n = 43)$	9.3 ± 4.1	9.7 ± 5.6	+5	0.81
Potato $(n = 43)$	13 ± 6.0	16 ± 7.5	+29	<0.001
Inulin (<i>n</i> = 49)	11 ± 6.0	13 ± 7.0	+17	0.14

- **Dozens** of dietary fiber species exist
- Each may vary in effect
- Individuals also vary in response

Venkataraman et al., Microbiome 2016

- **Dozens** of dietary fiber species exist
- Each may vary in effect
- Individuals also vary in response

How do we avoid provisioning astronauts with prebiotics that don't work?

GOALS OF OUR WORK

Answer three questions for astronauts:

- Which prebiotics should they take?
- Who should take them?
- And, when?

GOALS OF OUR WORK

Answer three questions for astronauts:

Which prebiotics should they take?

- Who should take them?
- And, when?

CHALLENGES TO SCREENING PREBIOTICS

- Potentially a large number of prebiotics to screen
- Human studies can be logistically demanding
- In vivo physiological variation (e.g. SCFA absorption) may mask microbial response

A SIMPLE HOST-FREE PREBIOTIC ASSAY

Zack Holmes

PUMP: Prebiotic Utilization and Metabolite Production

Holmes et al., mBio 2020

OBSERVED SIGNIFICANT VARIATION BETWEEN PREBIOTICS

n=17 stool donors p < 0.0001, two-way ANOVA

Holmes et al., *<u>mBio</u>* 2020

YET, VARIATION BETWEEN DONORS LARGER

Grouped by **DONOR**

Average Total SCFA Concentration / Control

Holmes et al., mBio 2020

GOALS OF OUR WORK

Answer three questions for astronauts:

- Which prebiotics should they take?
- Who should take them?
- And, when?

Need lots of cultures:

 Each individual estimated to harbor hundreds of unique gut bacterial strains

Need lots of cultures:

- Each individual estimated to harbor hundreds of unique gut bacterial strains
- Millions of colonies needed to match sensitivity of DNA sequencing

Need lots of cultures:

- Each individual estimated to harbor hundreds of unique gut bacterial strains
- Millions of colonies needed to match sensitivity of DNA sequencing

Culture can be **hard to scale**:

Manual isolation can be **tedious** and time-consuming

capture

Need lots of cultures:

- Each individual estimated to harbor hundreds of unique gut bacterial strains
- Millions of colonies needed to match sensitivity of DNA sequencing

Culture can be hard to scale:

- Manual isolation can be tedious and time-consuming
- Automation may require expensive and/or bulky robotics that need to be enclosed anaerobically

90% of gut bacteria

Colony Picking Robot

Anaerobic Chamber

MICROFLUIDIC BACTERIAL CULTURE

Rachael Bloom

MICROFLUIDIC BACTERIAL CULTURE

Rachael Bloom

MICROFLUIDIC BACTERIAL CULTURE

Rachael Bloom

Max Villa

Max Villa

Phylum Firmicutes Bacteroidetes Actinobacteria Proteobacteria

EVERYONE HOSTS PREBIOTIC UTILIZERS

Villa*, Bloom*, et al., mSystems 2020

EVERYONE HOSTS PREBIOTIC UTILIZERS *But, people vary in abundance of utilizers*

across prebiotics

Villa*, Bloom*, et al., mSystems 2020

EVERYONE HOSTS PREBIOTIC UTILIZERS

But, people vary in abundance of utilizers across prebiotics

Villa*, Bloom*, et al., mSystems 2020

STUDY GOAL

 Test the hypothesis that individuals will vary in prebiotic metabolic potential, regardless of prebiotic

STUDY GOAL

- Test the hypothesis that individuals will vary in prebiotic metabolic potential, regardless of prebiotic
- Requires a *unique study design* where all individuals consume the same battery of prebiotics

CHoosing the OptiMal Prebiotic (CHOMP)

Zack Holmes

Heather Durand

Figure 2: Design for healthy human prebiotic trial. Study is uniform and balanced in period and frequency

Pre A: Inulin Pre B: Dextrin Pre C: Galactooligosaccharides n = 28 healthy
volunteers completed

ClinicalTrials.gov ID: NCT03595306

Holmes, et al., In prep

AGAIN, SIGNIFICANT VARIATION BETWEEN PREBIOTICS

IMPORTANTLY, INDIVIDUAL VARIATION CORRELATED ACROSS PREBIOTICS

WHAT DRIVES **INDIVIDUAL VARIATION?**

WHAT DRIVES INDIVIDUAL VARIATION?

WHAT DRIVES INDIVIDUAL VARIATION?

Can recent fiber intake affect prebiotic response?

GOALS OF OUR WORK

Answer three questions for astronauts:

- Which prebiotics should they take?
- Who should take them?
- And, when?

HYPOTHESIS

Exposure to **prior doses** of a prebiotic will affect microbiota response **over time**

Silverman, Durand, et al, Microbiome 2018

IS A SINGLE DOSE SUFFICIENT IN PEOPLE?

Jeff Letourneau

n = 40 healthy volunteers

HOW DOES THIS WORK?

Within 6 hrs of prebiotic exposure, human gut bacteria activate polysaccharide utilization loci

• Prebiotics vary in effect on gut microbiota

- Prebiotics vary in effect on gut microbiota
- But, stronger individual variation in response

- Prebiotics vary in effect on gut microbiota
- But, stronger individual variation in response
- Variation can be linked to gut microbial function, which in turn is linked to prior diet

- Prebiotics vary in effect on gut microbiota
- But, stronger individual variation in response
- Variation can be linked to gut microbial function, which in turn is linked to prior diet
- Even initial exposure to prebiotics will alter response to subsequent doses

Three questions:

1. Which prebiotics should they take?

- 1. Which prebiotics should they take?
 - Might not matter too much.

- 1. Which prebiotics should they take?
 - Might not matter too much.
- 2. Who should take them?

- 1. Which prebiotics should they take?
 - Might not matter too much.
- 2. Who should take them?
 - Greatest benefit among those who normally eat the least fiber

- 1. Which prebiotics should they take?
 - Might not matter too much.
- 2. Who should take them?
 - Greatest benefit among those who normally eat the least fiber
- 3. And, when?

- 1. Which prebiotics should they take?
 - Might not matter too much.
- 2. Who should take them?
 - Greatest benefit among those who normally eat the least fiber
- 3. And, when?
 - Poor responders may start shortly before spaceflight

ONGOING WORK

What are the effects of prebiotics on cognition and mental performance?

Ken Racicot

Mathias Basner

ACKNOWLEDGEMENTS

DUKE

Susan Alberts Sarah Armstrong Amy Bush Ashley Chi Jinny Cho Sandeep Dave Marc Deshusses Holly Dressman Anna Mae Diehl Murali Doraiswamy **Geoff Ginsburg** Joe Heitman Shuqiang Huang Stacy Horner Bruce Klitzman Dennis Ko Pao-Hwa Lin

Sayan Mukherjee Tom O'Connell Sunita Patil Herman Pontzer John Rawls Kim Roche Julie Scialla Xiling Shen Dori Steinberg Lily Suarez Anthony Sung Christine Tenekjian Jenny Tung Raphael Valdivia Alex Washburne Will Yancy Lingchong You

UNC

Paschal SheeranDiana DayalElizabeth ShankSteve ZeiselJune StevensCarlton Anderson

PROFUSA Natalie Wisniewski Scott Nichols

U VIENNA Arno Schintlmeister <u>David Berry</u> Fatima Periera <u>Michael Wagner</u> **icddr,b** Shahla Qadri

MGH Regina LaRocque

BROWN Tyler Kartzinel

NORTHWESTERN Patrick Seed

Pallick Seeu

NSRDEC Ken Racicot Danielle Anderson

PENN Mathias Basner PRINCETON Rob Pringle

NCSU Rob Dunn Manuel Kleiner

UCSF Peter Turnbaugh

U of Montreal Jesse Shapiro

North Carolina TRANSLATIONAL Research institute for **Biotechnology Center** NIH **SPACE HEALTH** Foundation TION SEARLE SCHOLARS PROGRAM DAMON RUNYON 60 CANCER RESEARCH ALFRED P. SLOAN THE HARTWELL FOUNDATION Young Investigator Grant FOUNDATION FOUNDATION CENTER FOR GASTROINTESTINAL BIOLOGY AND DISEASE

TRAINEES

2013-2017 Aspen Reese (Faculty, UCSD) 2014-2019 Rachael Bloom (Scientist, Novozymes) 2014-2019 Firas Midani (Postdoc, Baylor U) 2015-2019 Justin Silverman (Faculty, Penn State) 2015-2020 Max Villa, Ph.D. (Scientist, Baebies, Inc.) 2019-present Veronica Palacios, MD 2017-present Zack Holmes 2018-present Brianna Petrone 2018-present Jeff Letourneau 2020-present Jun Zeng

SCIENTISTS

- 2013-present Heather Durand, MS 2017-present Sharon Jiang, MS
- 2018-2020 Eric Dallow
- 2019-present Stephen Embree

MED STUDENTS & UNDERGRADS

2013-2017 Sai Nimmagadda 2014-2017 Anchi Wu 2015-2017 Lionel Watkins 2015-2018 Andrew Grover 2017-2019 Miranda Metz 2018-present Savita Gupta 2018-present Diana Dayal 2019-present Mohsin Haider 2019-present Cynthia Wang