The Space Radiation Environment

TRISH Red Risk School Seminar Series April 30, 2020

> Gregory Nelson, Ph.D Loma Linda University Div. Biomedical Engineering Science and NASA Space Radiation Element

For the Lawyers.....

The views expressed in this presentation are my own and do not necessarily reflect those of Loma Linda University or NASA.

Outline

- Introduction
- Properties of Charged Particles
- Charged Particle Radiobiology
- Damage to Electronics
- Space Environment
- NASA Health Risks

Primary Hazards to Humans during Space Flight

Decreased gravity

• Bone Loss, Muscle Atrophy, Reduced Immune Function, Fluid-Shifts

Isolation/confinement/altered light-dark cycles

• Sleep Issues, Psychological Stress

Hostile/closed environment

• Atmosphere, Microbes, Dust, Habitability

Distance from Earth

• Autonomy, Food Systems/Nutrition, Clinical Medicine

Increased radiation

• Cancer, CNS, Cardiovascular and Degenerative Changes, Acute Risks

Image Credit: NASA/Pat Rawlings, SAIC

Modified from L Simonsen

The Space Radiation Problem

- Space radiation is comprised of high-energy protons, heavy ions and secondary particles produced in shielding
- Unique damage to biomolecules, cells, and tissues occurs from charged particles that is qualitatively distinct from photons
- No human data to estimate risk from heavy ions
- Animal and cell models must be applied or developed to estimate cancer, CNS risks, and other risks
- Strategies to mitigate risks must be developed and implemented

Background Radiation Exposure ≈ 3.60 mSv / year (w/o Medical Exposures)

Chest X-ray ~ 0.1 mSv; Mammogram ~ 2.5 mSv; CT Scan ~ 30 - 100 mSv Space Station Annual Dose ~ 0.1 Sv; A-Bomb Dose ~ 1- 4 Sv; RT 20 - 90 Sv

http://www.bbc.co.uk/schools/gcsebitesize/science/add_ocr_gateway/radiation/radioisotopesrev1.shtml

N Metting, DOE Low Dose Program

A Snapshot of the Space Radiation Field Cosmic Ray Tracks from Apollo 17

1.5 mm

Schaefer & Sullivan, 1976

~ 1.5 mm Microscope Field 8A-11 (Film bag) 43.0/122.6 Apollo 17

Properties of Charged Particles

The Fundamental Concept of Dose is Insufficient

• Dose is defined as energy absorbed per unit mass *(irrespective of the spatial distribution of the absorbed energy)*

Low LET radiation deposits energy in a uniform pattern

High LET radiation deposits energy in a non-uniform pattern

Physical Quantities

- $HZE = \underline{High} \text{ charge } (\underline{Z}) \text{ and energy } (\underline{E})$
- Dose (D) = Energy absorbed in bulk matter [How Much]
 - D = F x LET (1 Gy = 1 J/kg = 100 rad)
- Fluence (F) = number of particles per unit area (#/cm²) [How Many]
- Linear energy transfer (LET) = rate of energy loss in bulk matter (keV per micron of track length) [How Intense]
- Range (R) = average distance travelled before ion stops
- Relative Biological Effectiveness (RBE) = ratio of doses of ion to gamma rays to produce identical biological effect [How Effective]

Radiation Protection Concepts

- Quality Factor (Q) = committee assigned value of RBE for human radiation protection
- Dose Equivalent (H) = $D \times Q$ (1 Sv = 100 rem)
- Risk = model quantity, not a measured value

Energy Loss by Radiation in Matter

Photons (Exponential attenuation)

•
$$N(x)/N_o = e^{-\mu x}$$

 \circ N(x)/N_o is fraction of photons left at depth x \circ μ is linear attenuation coefficient

- > Charged Particles (Bragg Curve, LET)
 - $1/\rho(dE/dx) = 4\pi r_o^2 N_e Z^2 m_o c^2 \beta^2 \left[\ln(2m_o c^2 \beta^2 / I(1-\beta^2) \beta^2 \Sigma_i(c_i/Z) \right]$
 - N_e is electrons per gram of medium, ρ is density of medium, β is v/c, z is charge of particle and I is ionization constant of medium
 - The important component is : $dE/dx \propto z^2/\beta^2$

Photon and Proton: Dose vs. Depth

X-rays & Gamma Rays: Exponential

Protons:

Bragg

Curve

A single 18 MeV x-ray beam entering from the front. The central circle represents the prostate gland. The irregular structure outlined in white below the prostate gland represents the rectum. A single x-ray beam entering from above deposits most of its energy within the small bowel and bladder before reaching the tumor.

A proton beam deposits its maximum energy within the tumor in the prostate gland, minimizing the dose to the small bowel and bladder.

Ionization Density and LET Varies with Z²

High Energy Sections of HZE Particle Trocks in Ilford G.5 Emulsion Flown on Apollo 8

Schaefer & Sullivan, 1976

Tracks of LET = 150 keV/micron IonsLET is useful but insufficient to describe track structure

Plante and Cucinotta

Radial Dose Distribution of a Track

A 500 MeV/n particle can produce delta electrons of range 1 - 5 mm (100 - 500 cell diameters) in water

Nuclear Interactions: Projectile Fragmentation

Charged Particles Can Create Secondary Particles through Nuclear Reactions

Exposures on a Microscopic Scale

⁵⁶Fe 1000 MeV/n, LET 151 keV/μm. Dose 50 cGy. Cell (nucleus) area 100 μ m² Dose = Fluence (average) x LET

Charged Particle Radiobiology

An Analogy for Structured Energy Deposition and its Consequences

Low LET radiation produces isotropic damage to organized targets.

High LET radiation produces correlated damage to organized targets.

DNA Damage

Modified from M Story

Cell Survival and RBE Concept

V79 Cells ²³⁸Pu α vs X-rays

Relative Biological Effectiveness (RBE)

 Ratio of doses that produce same biological effect

Varies with dose.

For 50% Survival RBE for alpha Particles **Dose B** ÷ **Dose A** ~ 5

Modified from D Goodhead and Radiat Res 92: 343 (1982)

Mammary Tumor Induction in Rats Gamma rays, Protons and Iron Particles

Dicello et al. (2004)

Light Flash Illusions from Single Particles

Sketches by Astronauts

ALTEA Experiment

L Narici. New Journal of Physics 10 (2008) 075010 W.G. Sannita et al. Vision Research 46 (2006) 2159–2165

Neuronal Branching and Spine/Synapse Loss

Mouse. Dendritic Spine # and Density. ¹⁶O and ⁴⁸Ti ions. 8 weeks post IR. Parihar et al.

The Bystander Effect

The Biology Is Complicated

- Dose Responses Are Not All Linear
 - U-Shaped
- Particle Effects May Be Unique
 - Effects may trend oppositely
 - Quality factors very hard to define
- Mixed Particle Exposures May Not Produce Simple Additive Responses
- Sequential Exposures Don't Produce Simple Additive Responses
- Dose Rate Effects Unclear for Particles
 - \circ What are the biological time constants?

GCR Damage to Electronics

Single Event Upsets Single Event Latch-ups Single Event Gate Ruptures

Examples of Single Event Upsets

SOHO / LASCO Satellite Imager

GCR Damage to Electronics Single Event Upsets, Latchups & Gate Ruptures

Figure 6. Photograph of a catastrophic SEGR in a power MOSFET causing functional failure.

Figure 1. Schematic of an *n*-channel MOSFET illustrating the basic effect of total ionization-induced charging of the gate oxide. Normal operation (a) and postirradiation (b) show the residual trapped positive charge (holes) that produces a negative threshold voltage shift.

Harsh Environments: Space Radiation Environment, Effects, and Mitigation. R. Maurer et al. Johns Hopkins APL Technical Digest, Volume 28, Number 1 (2008)

Space Radiation Environment

Human Environments in Space

Present

Future

Proposed Updates to Design Reference Missions

DRM Categories	Mission Type and Duration	Gravity Environment	Radiation Environment	Earth Return
Low Earth Orbit	Short (<30 days)	microgravity	LEO-Van Allen	1 day or less
	Long (>30 days)	microgravity	LEO-Van Allen	1 day or less
Lunar Surface	Short (<30 days)	1/6 g	Deep space	5 days
	Long (>30 days)	1/6 g	Deep space	5 days
Lunar Orbital	Short (<30 days)	microgravity	Deep space	5 days
	Long (>30 days)	microgravity	Deep space	5 days
Mars	Preparatory (<365 days)	microgravity	Deep Space	Days-Weeks
	Planetary (≥365 days)	microgravity & 3/8 g	Mars	Mission duration

Complex Space Radiation Field Three Main Sources

Sources Outside and Inside the Solar System

Space Radiation Environment is Dominated by Charged Particles Example: Cosmic Ray Tracks from Apollo 17

1.5 mm

Schaefer & Sullivan, 1976

~ 1.5 mm Microscope Field 8A-11 (Film bag) 43.0/122.6 Apollo 17

Galactic Cosmic Rays
GCR Abundance

Nat. Res. Council (2008) Managing Space Radiation Risk in the New Era of Space Exploration

Cosmic Ray Tracks from Apollo 8 Track Width Varies with Z²

High Energy Sections of HZE Particle Tracks in Ilford G.5 Emulsion Flown on Apollo 8

Schaefer & Sullivan, 1976

Free Space GCR Environments at 1 AU

Modified from: M. S. Clowdsley, G. DeAngelis, J. W. Wilson, F. F. Badavi, and R. C. Singleterry

Dose Rates Observed During Mars Mission: MSL

•Near-constant GCR + five SPE events

• SPE events contribution to total dose $\sim 5\%$

•Average GCR absorbed dose rate 0.45 mGy/day

The Deep Space GCR Environment is Modified in the Lunar and Mars Environments

10¹⁰

Particle Fluence (# particles/cm²-MeV/amu-year) $_{0}^{0}$ $_{0}^{0}$ $_{0}^{0}$ $_{0}^{0}$

10

 10^{-2}

10-1

 10°

Lunar GCR Environment Neutron Component

Mars Surface GCR Environment Neutron Component Atmospheric Shielding 2°'s

10¹ 10² 10³ Energy (MeV/amu)

 10^{4}

10⁵

 10^{6}

Cucinotta

The Sun

The Sun is Composed Primarily of H & He Plasma

Sun Structure

High Resolution Views of a Sunspot and a Solar "Quake"

Solar Quake Sequence

Plasmas Generate and Follow Magnetic Field Lines

Solar Wind

- Stream of charged particles from Sun's Corona
 - Protons, electrons & heavier ions at a density of ~ 1 to 30 per cm³
- Magnetized plasma
- Detected at > 10 billion km from Earth by Pioneer and Voyager spacecraft
- Interface with interstellar space
- Velocity: ~300 900 km/sec
- Energy: 0.5 to 2.0 keV/n

Typical solar wind April 26, 2020 sohowww.nascom.nasa.gov

Solar Cycle: 11-Year Variation in Luminosity Accompanied by Magnetic Field Reversal

Solar Particle Events

Solar Particle Events

- Increased levels of protons and heavier ions
- Energies
 - Protons 100's of MeV
 - Heavier ions 100's of GeV
- Abundances depend on radial distance from Sun
- Partially ionized species have greater ability to penetrate magnetosphere
- Frequency a function of solar cycle

There Are Two Main Types of SPEs Impulsive (Flares) and Gradual (CMEs)

- Impulsive ~ 1000/year
 - Flare accelerated
 - Composition of flare plasma
- Gradual ~ 10/year
 - Coronal mass ejection driven shocks
 - Same composition as corona and solar wind

Solar Flare (Impulsive Event)

Particles arrive at Earth within minutes if field lines aligned.

Energy of particles is determined by events at Sun atmosphere

Coronal Mass Ejections (Gradual Events)

- Bubble of gas and magnetic field
- Ejects $\sim 10^{17}$ g of matter
- Shock wave accelerates particles enroute to 3000 km/s vs 400 km/s for solar wind
- Reaches Earth after ~ 1 day
- Associated with magnetic storms
- Proton rich solar events 10 x worse than flares

Coronal Mass Ejections April 14, 1980 & October 24, 1989

Probability of Occurrence Varies with Solar Cycle

R Turner, ANSER, Inc.

Free Space SPE Proton Spectra at 1 AU

Modified from: M. S. Clowdsley, G. DeAngelis, J. W. Wilson, F. F. Badavi, and R. C. Singleterry

The Deep Space SPE Environment is Modified in the Lunar and Mars Environments

Sept. 29, 1989 SPE On Lunar surface Sept. 29, 1989 SPE On Martian surface

Cucinotta

Time Course of August 1972 CME

Figure 4. Measured intensities at 1 au of solar event of August 2-11, 1972.

Wilson et al. (1997) Exposures to Solar Particle Events in Deep Space. NASA TP3668

Cumulative Size Distribution of SPEs

Cumulative Distribution of SPE

120% ~15 cGy 1009 $\sim 10\%$ of SPE's 80% Cycles 19-23 Cumulative % Result in Cycle 19 Cycle 20 Cumulative 609 · Cycle 21 Doses (BFO) Cycle 22 Cycle 23 40% $> 15 \, cGy$ 20% 0% 1.E+04 1.E+07 1.E+05 1.E+06 1.E+08 1.E+09 1.E+10 Size of Event, protons/cm² ($\geq \Phi_{30}$)

FIGURE 2-9. Cumulative Distribution of SPE. SOURCE: F. Cucinotta, NASA. "Radiation risk assessments for lunar missions-shielding evaluation criteria", Presented to the committee on December 12, 2006.

Nat. Res. Council (2008) Managing Space Radiation Risk in the New Era of Space Exploration

Potential SPE Exposures

A modest SPE under nominal shielding in deep space

Will be on the order of 1-10 cSv (BFO) Equals 10 to 250 days on orbit in ISS Equals one month GCR dose on the way to Mars

Equals 100 to 1000 chest x-rays Equals 3-30 years annual dose for public

An astronaut on EVA can get 3 to 5 times the shielded dose

R. Turner, Anser, Inc.

How Bad Can an SPE Be? Lunar Surface-EVA BFO Dose Equivalent (cSv)

Largest Observed CME "Carrington Event" 9/1/1859

The largest event in the ice-core record occurred at 1859.75, in close correlation with the September 1 1859 white light flare seen by Carrington.

The fluence was conservatively estimated to be 19 x 10⁹ protons/cm² with >30 MeV; ~4 times the fluence of the Aug. 1972 event

Dose derived from nitrate concentration in Greenland Ice Cores

Space Weather Prediction

http://www.swpc.noaa.gov/

Geomagnetic Field and Trapped Radiation Belts

Earths Magnetic Field

Approximately Dipolar Field 0.5 Gauss (5x10⁻⁵ Tesla) Magnetic South is at Geographic North Field Strength at Surface (2014) Red is strong, Blue is Weak

Modification of Geomagnetic Field by Solar Interactions

Cosmic Ray Trajectories in the Geomagnetic Field

There are three types of orbits, depending on the energy of the incoming particle.

 E_o is Geomagnetic Cutoff Energy in the Range of ~ 1 - 10 GeV (not GeV/n).

Van Allen Radiation Belts

Van Allen Belt Particles

- Components:
 - Protons: $E \sim 0.04$ to 500 MeV
 - Electrons: $E \sim 0.04$ to 7 MeV
 - Stopped by 6 mm of Al
 - Heavier Ions: E Low
- Location of peak levels is E dependent
 - Peaks at ~1500 nm
- Lowest point ~ 200 nm over South Atlantic
- Location of populations shifts with time
- Average counts vary slowly with solar cycle
- Counts may increase by orders of magnitude with magnetic storms

Variations in Solar Luminosity Affect the Trapped Belt Spectrum

Fig. 3.3. Trapped-belt proton spectrum for the ISS orbit (51.6 degrees inclination, 470 km altitude) using AP-8 models for solar maximum and minimum (Atwell, 1999)⁵.

Temporal Variations

Protons

- Fairly Stable
 - Highest levels at solar max
 - Lowest levels at solar min
 - $\sim 6\%$ change per year
 - ~2-fold difference between solar min and max
- Geomagnetic field shift changes location
 - ~6 degrees westward shift in longitude in 20 years
- Particle increases at outer edge may create new belts with magnetic storms

Electrons

- Cycles with solar cycle
 - Highest at solar max
 - Lowest at solar minimum
- Inner Zone fairly stable
- Outer Zone varies by 10² to 10⁶ fold
 - Solar cycle variations masked
 - Local time variations due to magnetic field distortion
 - 27 day variation due to solar rotation
 - Sensitive to magnetic storms
Dose Rate Measured by JSC Tissue Equivalent Proportional Counter

Altitude ~ 340 kilometers December 10-22, 2006

Shuttle - STS-116 TEPC - Dose Rate

E.R. Benton, OSU

Aurorae

Interaction of SPE with Geomagnetic Field and Upper Atmosphere

http://www.sec.noaa.gov

Terrestrial Effects of Large CME's

Shielding

Shielding by Geomagnetic Field

Flux vs energy for Fe nuclei

KINETIC ENERGY [MeV/nuc]

Figure 18. Differential Energy Spectrum for Iron Nuclei in 1984.3, a) Outside the Geomagnetic Field, b) 24 hours Average for LDEF Orbit (28 Degree Inclination, Circular Orbit at 463 km Altitude).

Earth's Atmosphere

100 km thick at avg. density 0.0012 g/cm³

Shielding Thickness $\sim 240 \text{ g/cm}^2$

~2.4 m Water, 21 cm Lead

Changes w Solar Cycle

Mars Surface Dose (MSL) Reflects Daily Atmosphere Density Changes

Mars Sol (Martian day since MSL landing)

D Hassler Southwest Research Institute / NASA MSL

Production of Secondary Particles by Spacecraft Materials

Spacecraft Dose Equivalent Composition as Function of Shielding

Doses in Context: Powers of Ten

Exposure Rules of Thumb

- A mammalian cell nucleus (100 μm²) is traversed by a particle on average:
 - Protons: Once every 3 days
 - Helium: Once every 3 weeks
 - Z > 2 ion: Once every 3 months
- Mars mission exposure: $\approx 200:100:50:50:50$
 - Protons $\approx 200 \text{ mGy}$
 - Helium $\approx 100 \text{ mGy}$
 - Z = 3 to 9 \approx 50 mGy
 - $-Z > 9 \qquad \approx 50 \text{ mGy}$
 - Neutrons $\approx 50 \text{ mGy}$
 - Total 0.445 mGy/day or 1.8 mSv/day
 » MSL RAD

NASA Crew Doses (Dose-rates ~1.5 mSv/d, Deep Space)

Projected Exposures Mapped to 2019 DRMs

2016 DRM	BFO Dose (mGy)	2019 DRM
LEO6	30-60	LEO Short
LEO12	60-120	LEO Long
Sortie	15-20	Lunar Orbital/Surface Short
Lunar Visit/Hab	100-120	Lunar Surface Long
Deep Space Hab	175-220	Lunar Orbital Long/Mars Preparatory
Planetary	300-450	Mars Planetary

- Dose ranges encompass span of mission architectures and MSL measurements
 - Doses are highly dependent on crew, vehicle, and missions parameters
 - Mars dose equivalent 1050 1200 mSv
- ✤ 1989 SPE series ~98 mGy (additional)
 - Female BFO
 - 20 g/cm² aluminum vehicle

NASA's Health Risks

Categories of Space Radiation Risks

Four categories of radiation risk of concern to NASA

- Carcinogenesis (morbidity and mortality risk)
- Acute and Late Central Nervous System (CNS) risks

• Immediate or late functional changes

- Chronic & Degenerative Tissue Risks
 - Cataracts, heart-disease, etc.
- Acute Radiation Risks ARS, sickness or death

Caveat: Other spaceflight stressors also contribute to risk and combinatorial effects are largely unknown

Risk Assessment

- Astronauts are radiation workers.
- NASA and astronauts enter into informed consent agreement
- Risk management follows "ALARA" principle
- Time Distance Shielding mitigation approaches
- Unavoidable exposure
- Risk benefit analysis
- Acceptable risks
 - To Crew
 - To Family
 - To Society (NASA represents the public)
- 3% Lifetime mortality occupational risk benchmark

Risk Projection Strategy

Adapted from F. Cucinotta

Mortality Risk at Solar Minimum

(20 g/cm² Aluminum Shielding)

REID (Risk of Exposure Induced Death from all causes).

1 - 13% Range for Mars Missions – Avg. 2 - 4%.

Mission	D, Gy	H, Sv	% REID	95% CI
		<u>Males</u>		
Lunar (180 d)	0.06	0.14	0.56	[0.19,1.92]
Mars (600 d)	0.36	0.87	3.2	[1.0,10.5]
Mars (1000 d)	0.41	0.96	3.4	[1.1,11.0]
		<u>Females</u>		
Lunar (180 d)	0.06	0.14	0.68	[0.21,2.4]
Mars (600 d)	0.36	0.87	3.9	[1.2, 12.8]
Mars (1000 d)	0.41	0.96	4.1	[1.4, 14.4] 91

NASA Permissible Exposure Limits

NASA-STD-3001, Volume 1. Limits for lens, circulatory system, and central nervous system are imposed to limit or prevent risks of degenerative tissue diseases

Table 4—Dose limits for short-term or career non-cancer effects (in mGy-Eq. or mGy) Note RBE's for specific risks are distinct as described below.

Organ	30 day limit	1 Year Limit	Career
Lens*	1000 mGy-Eq	2000 mGy-Eq	4000 mGy-Eq
Skin	1500	3000	4000
BFO	250	500	Not applicable
Heart**	250	500	1000
CNS***	500	1000	1500
CNS*** (Z≥10)	-	100 mGy	250 mGy

*Lens limits are intended to prevent early (< 5 yr) severe cataracts (e.g., from a solar particle event). An additional cataract risk exists at lower doses from cosmic rays for sub-clinical cataracts, which may progress to severe types after long latency (> 5 yr) and are not preventable by existing mitigation measures; however, they are deemed an acceptable risk to the program.

**Heart doses calculated as average over heart muscle and adjacent arteries.

***CNS limits should be calculated at the hippocampus.

Current Integrated Mitigation Strategy

• Pre-Mission

- Mission planning trajectory, duration, habitat/vehicle design
 - » Radiation Exposure and risk assessment
 - » Trajectory planning to reduce time spent in the radiation belts
- Crew assignment
 - » Permissible mission duration assessment
 - » Medical screening

• In-Mission

- SPE storm shelter or shielding garment as available
- Continuous operational radiation monitoring and alarming
- Space weather assets monitoring and forecasting
- Appropriate tailoring of medical capabilities for DRMs
- Post-Mission
 - Medical follow-up
 - Standard clinical therapies

Research Challenges to Increase Safe Days

- Radiation quality effects on biological damage
 - Qualitative and quantitative differences between space radiation compared with x-rays or gamma-rays
- Dependence of risk on dose and low dose-rates encountered in space
 - Biology of repair, cell, and tissue regulation
- Extrapolation from experimental data to humans
- Individual radiation sensitivity
 - Genetic, dietary and healthy worker effects
- Quantifying synergistic modifiers of risk from other spaceflight factors
- Research solicitations focused on understanding and quantifying these uncertainties to increase safe days in space, inform standards, and identify/validate biomarkers and medical countermeasures for risk mitigation

Biological Rationale for Multi-ion GCR Simulations

- Dose responses are not all linear
- Particle effects may be unique
- Effects may be antagonistic
- Mixed particle exposures may not produce simple additive responses
- Dose rate effects unclear for particles
- Insufficient time and resources for reductionist approach alone

GCR sim's at Brookhaven National Laboratory 33 and 6 ion/energy combinations

Brookhaven National Laboratory

NASA Space Radiation Laboratory *

Spacecraft Shielding

Local Field: biological samples experience radiation field as if they were located here.

Free Space

Summary

- Complex field of charged particles that varies spatially and temporally
- Energy deposition patterns (tracks) lead to unique, and less repairable biological effects.
- GCR, solar wind and trapped belts relatively constant dose rate
- Typical deep space exposures 0.45 mGy or 1.5 mSv per day
- Solar Cycle changes spectrum and fluence ~ 2-fold
- ~ 1 Sv Exposure for a Mars mission
 - Exceeds current safety limits
- SPEs Capable of ~ 1 Sv to deep tissues and ~ 6 Sv to skin
- SPEs variable over hours to a few days
 - \circ Peak dose rate ~5 cGy/min
 - Unpredictable occurrence varies with solar cycle
- Risks and mitigation strategies identified
 - Biological uncertainty greatest component
 - Ongoing research including GCR simulation

Thank-You for Your Attention

Gregory Nelson, Ph.D. Department of Basic Sciences Division of Biomedical Engineering Sciences Loma Linda University

grnelson@llu.edu

Thank-you to my many colleagues and sponsors