ACCREDITATION
Baylor College of Medicine is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award masters and doctorate degrees. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, GA 30033-4097 or call (404) 679-4500 for questions about the accreditation of Baylor College of Medicine. The Commission should be contacted only if there is evidence that appears to support Baylor’s significant non-compliance with a requirement or standard.

BAYLOR COLLEGE OF MEDICINE DIVERSITY AND INCLUSION POLICY
Baylor College of Medicine fosters diversity among its students, trainees, faculty and staff as a prerequisite to accomplishing our institutional mission, and setting standards for excellence in training healthcare providers and biomedical scientists, promoting scientific innovation, and providing patient-centered care.

- Diversity, respect, and inclusiveness create an environment that is conducive to academic excellence, and strengthens our institution by increasing talent, encouraging creativity, and ensuring a broader perspective.

- Diversity helps position Baylor to reduce disparities in health and healthcare access and to better address the needs of the community we serve.

- Baylor is committed to recruiting and retaining outstanding students, trainees, faculty and staff from diverse backgrounds by providing a welcoming, supportive learning environment for all members of the Baylor community.

NOTICE OF NONDISCRIMINATION
Baylor College of Medicine is committed to a safe and supportive learning and working environment for its learners, faculty and staff. College policy prohibits discrimination on the basis of race, color, age, religion, gender, gender identity or expression, sexual orientation, national origin, veteran status, disability or genetic information. Harassment based on any of these classifications is a form of discrimination and also violates College police (02.2.25, 02.2.26) and will not be tolerated. In some circumstances, such discriminatory harassment also may violate federal, state, or local law.
MESSAGE FROM THE CHAIR

I am pleased to introduce you to the Department of Molecular and Human Genetics at Baylor College of Medicine. Our mission is to transform medicine with the science and practice of genetics and genomics. The integrated research, clinical and diagnostic activities housed within our department have made great strides in the evolution of genetic medicine.

The Department remains a top-ranked genetics program, ranking first among other U.S. genetic departments in total awarded NIH funding and number of grants for over a decade.

We continue to lead in the diagnostic testing arena with Baylor Genetics, our joint venture with H.U. Group Holdings, Inc. This jointly governed laboratory supports the academic mission and innovation of the department while promising to extend the impact of genetic diagnostic testing worldwide including, most recently, for infectious diseases.

Our faculty continue to deliver our clinical, training and research missions at home and abroad through our ongoing partnership with the Chinese University of Hong Kong Center for Medical Genetics.

During this past year, Baylor was recognized on Gizmodo’s Degrees of the Future 2022 list as one of the top genetics and genomics programs and as a Center of Excellence by the National Organization of Rare Disorders.

In addition, new and continuing consortia with the National Institutes of Health and industry are leading to new gene discoveries and advancements in the implementation of genetics and genomics. These consortia include the All of Us program, GREGoR: Genomic Research to Elucidate the Genetics of Rare disease, the Knockout Mouse Phenotyping Program, the Center for Precision Medicine Models, Clinical Genome Resource, Clinical Sequencing Evidence-Generating Research, and the Rare Diseases Clinical Research Networks.

We recently formed a new center to continue the work of Baylor’s Undiagnosed Disease Network (UDN) clinical site, DNA sequencing core and model organisms screening center by providing clinical services and genetic testing and analysis to assess patients who have not received a diagnosis for their condition. This new Undiagnosed Diseases Center (UDC) will utilize the new self-service capabilities of the Consultagene platform.

Another exciting development has been the beginning of Baylor’s All of Us Evenings with Genetics Research Program, a program that aims to engage researchers from diverse backgrounds, including those from underrepresented groups, in utilizing the NIH’s All of Us Research Program data resources to advance precision medicine.

The future holds much promise due to the talent and dedication of our renowned faculty, trainees and staff. I consider myself privileged to be a part of this exciting and vital effort.

Best regards,

Brendan Lee, M.D., Ph.D.
Robert and Janice McNair Endowed Chair in Molecular and Human Genetics
CONTENTS

About the Department 6
Graduate and Medical Education 8
 Clinical Affairs 13
Diagnostic Laboratory Affairs 14
 Community Outreach 19
 Research Faculty 20
Primary Appointments 21
Secondary Appointments 88
Baylor College of Medicine 99
 Texas Medical Center 100
 Houston 101
Baylor College of Medicine Affiliated Hospitals, Institutions, and Facilities Map 102
The Institute for Molecular Genetics was created in 1985 and the Department of Molecular and Human Genetics was established in 1994. The Department embodies five decades of organized genetics activity at Baylor College of Medicine. Starting in the 1970’s with the arrival of Drs. C. Thomas Caskey and Arthur Beaudet, it has become the leading genetics program in the world. The Department is currently chaired by Dr. Brendan Lee, the Robert and Janice McNair Endowed Chair in Molecular and Human Genetics, and offers a variety of research, clinical and training programs in genetics and genomics to graduate students, medical students, postdoctoral research fellows and medical genetics residents. The Department integrates basic research in genetic and genomic mechanisms; translational research in disease models; observational and therapeutic clinical trials in rare and common genetic diseases; prenatal, pediatric and adult medical genetics care; and cutting-edge genetic diagnostic services.

We have more than 530 faculty, trainees and staff in the Department. Our research faculty are joined by clinical, genetic counseling and diagnostic laboratory faculty in our mission to transform medicine with the science and practice of genetics. Our faculty include three members of the National Academy of Sciences, seven members of the National Academy of Medicine and nine fellows of the American Association for the Advancement of Science.

The Human Genome Sequencing Center led by Dr. Richard Gibbs, Wofford Cain Chair in Molecular and Human Genetics, is a major strength of the environment. Other academic centers and units led by genetics faculty include the Neurological Research Institute led by Dr. Huda Zoghbi and the Huffington Center on Aging led by Dr. Hui Zheng.

Among genetics departments at U.S. medical schools, we continue to rank highest in both the number of grants and total funding from the National Institutes of Health. Our facilities are equipped with state-of-the-art instrumentation for research in molecular, cellular and biochemical genetics. There are also several specialized research centers that galvanize collaboration among faculty at Baylor within the department. We also have extended our mission globally with a clinical center at The Chinese University of Hong Kong and the joint venture diagnostic laboratory, Baylor Genetics, with H.U. Group Holdings, Inc. The Department’s various research, clinical and administrative activities currently occupy about 175,000 square feet of space. Because of this rich environment, the Department continues to be a magnet for trainees interested in genetics while continuing to grow in breadth, depth and accomplishments.
The Graduate Program in Genetics & Genomics provides outstanding educational opportunities for students who wish to pursue a career in research, education and service in this field. Students in the program obtain rigorous training in modern biology with a special emphasis on genetics and genomics and participate in cutting-edge research on a variety of topics. Our students have received prestigious awards and have published their work in some of the best peer-reviewed journals in the world. The unique environment of a large medical center provides our students with an opportunity to obtain education and practical experience in both basic and applied research.

The program requires a full-time commitment to graduate studies and research. To encourage our students to fulfill their potential and excel in their work, we provide a competitive stipend, which stretches considerably further in Houston where the cost of living is considerably lower than in other large U.S. cities. Students who enroll in 2023-2024 will receive $35,500 per year. Tuition, medical and dental insurance are also provided. Students who obtain funding through personal fellowships receive an additional $3,000 bonus from the Dean of the Graduate School.

The requirements for graduation include the successful completion of 30 credit hours of required courses and electives, the successful completion of the Qualifying
Examination, the conduct of an original research project and the submission and defense of a doctoral dissertation.

The research interests of the program faculty span a very broad range from the study of the basic principles of DNA replication and repair to DNA recombination, cell cycle control, aging, differentiation and development in a variety of model organisms. Studies in model organisms, such as *E. coli*, yeast, *Dictyostelium*, flies, worms and mice, are tightly integrated with studies on the genetic basis of the human condition.

For the didactic phase of graduate training, students participate in a set of foundational courses during the first two terms, followed by field-specific courses and a variety of electives. Through these courses, students will obtain a broad, coherent background in advanced aspects of genetics, molecular biology, bioinformatics, biochemistry and cell biology. This material is supplemented with journal clubs and seminars. Students interested in bioinformatics, genomics and systems biology can join a special track that offers flexible training in mathematics, statistics and computational biology.

The concentration of the coursework in the first year enables the student to progress relatively rapidly to full-time laboratory research efforts. During the first-year students also participate in a minimum of three laboratory rotations. Through these rotations, students obtain valuable hands-on experience in laboratory techniques and become acquainted with a variety of research topics before selecting a major thesis advisor.

Students may also take relevant elective courses offered by other programs at Baylor College of Medicine, Rice University, the University of Texas Health Science Center-Houston, University of Texas Medical Branch, Texas A&M Institute of Biosciences and Technology or the University of Houston at any time during their graduate school tenure.

In the first term of the second year of study, the students write a detailed research proposal on a topic in the field of their planned dissertation research. They defend the proposal to a qualifying examination committee composed of faculty from the Graduate Program in Genetics & Genomics. Upon successful completion of the examination and course work, the student is admitted to candidacy to pursue a thesis research project under the direction of the major advisor and a thesis advisory committee.

The final step to the completion of the Ph.D. is the preparation of a thesis and presentation of the thesis research work at a formal seminar, followed by a dissertation defense to the thesis committee.

Throughout the duration of this program, graduate students are required to attend seminars. Several excellent seminar programs exist within the Department of Molecular and Human Genetics, as well as in the other departments at Baylor College of Medicine. The Department of Molecular and Human Genetics also sponsors an annual two-day research retreat where department faculty, graduate students and postdoctoral trainees present and discuss their research in an informal interactive atmosphere.

Program Leadership

Gad Shaulsky, Ph.D., Director
Graeme Mardon, Ph.D., Associate Director
Shinya Yamamoto, D.V.M., Ph.D., Associate Director

Graduate Program Administrator

Judi Coleman
MEDICAL STUDENT EDUCATION

The Genetics & Genomics Pathway at Baylor College of Medicine was established in 2011 and is the first of its type in the nation, providing a unique and valuable opportunity for medical students to integrate genetics early on in their medical careers. Advances in medical genetics, molecular biology, and biomedical technology have applications to the treatment of disease, determination of disease risk, use of pharmacologic agents, reproductive counseling and interpretation of clinical laboratory data. In addition, ethical and public policy concerns related to the application of these technologies to promote health and wellness have emerged.

The goals of the Genetics & Genomics Pathway include (1) building upon the foundation of basic genetic principles provided in the pre-clerkship curriculum with additional educational experiences in medical genetics, (2) enhancing the medical student experience to include a broad range of patients with genetic conditions, (3) developing the student's appreciation for the nuances inherent in performing and interpreting clinical diagnostic analyses in biochemical genetics, molecular genetics and cytogenetics, (4) providing an interface with the community and patient advocacy organizations to enhance the student's awareness of the social concerns faced by patients and families affected with genetic disorders, (5) preparing students to author a scholarly publication and/or presentation, and (6) providing students a means to network and discuss various topics and career paths in medical genetics.

Track Directors
Lorraine Potocki, M.D.
Keren Machol, M.D., Ph.D.

POSTDOCTORAL RESEARCH TRAINING

The faculty of the Department of Molecular and Human Genetics have incredibly broad expertise and have mentored hundreds of postdoctoral trainees. Faculty research projects range from seeking answers to basic science questions to those that are immediately clinically applicable. Specific research interests are outlined in the profile of each faculty member. Applications for and inquiries regarding research postdoctoral training should be addressed to the specific faculty member.

RESIDENCY AND FELLOWSHIP TRAINING PROGRAMS

The Medical Genetics and Genomics Residency Programs are accredited by the Accreditation Council for Graduate Medical Education (ACGME). We are currently approved for a total of 12 residents. Available training pathways include a two-year residency in medical genetics and genomics (individuals enter this program after at least two years of other residency training) and four-year combined programs in pediatrics/medical genetics and genomics, internal medicine/medical genetics and genomics, and maternal-fetal medicine and medical genetics and genomics. In all pathways, genetics clinical time is divided between rotations on the inpatient consultation service, outpatient general adult & pediatric clinics, prenatal clinics, subspecialty clinics and the diagnostic laboratory as well as attending conferences and didactic teaching sessions.

The clinical experience is both thorough and extensive because of the availability of the department's large clinical services and clinical faculty; the comprehensive diagnostic laboratory which includes areas of cytogenetics, biochemical genetics and molecular genetics; the active prenatal diagnosis program; and several medically relevant research projects. A variety of lectures and conferences on clinical and research topics is provided to residents. Most graduates of the program stay additional years in a mentored faculty position developing independent research programs. Trainees are strongly encouraged to seek individual fellowships and NIH K awards for salary and research funding beyond the second year of training.

Medical Biochemical Genetics is a fellowship that is accredited by the ACGME for Medical Genetics. This one-year training program is meant to provide additional training in the diagnosis and management of inborn errors of metabolism. Board certification is available through the American Board of Medical Genetics and Genomics.

Our Clinical Biochemical Genetics and Laboratory Genetics and Genomics (LGG) fellowships are also
accredited by the ACGME. We offer two-year fellowship training in both programs. LGG is a specialty of the ABMGG that incorporates training in both molecular and cytogenetic techniques, clinical interpretation, and laboratory management in a single 24-month program.

Training takes place at our diagnostic laboratory, Baylor Genetics, and our affiliated hospital, Texas Children's Hospital, where over 20 laboratory directors as well as more than 30 physicians and genetic counselors support the program through direct supervision of fellows as well as through the didactic curriculum.

Fellows have the opportunity to participate in clinical test validations, take part in the ongoing assay developments and improvements and develop research projects that are often translational in scope. The integrated training provided by the fellowship programs prepare those who wish to become laboratory directors in academic or commercial diagnostic centers as well as those who wish to lead projects focusing on clinical genetic and genomic diagnostics.

Program Leadership

V. Reid Sutton, M.D., Director of Clinical Residency and Fellowship Programs

Lindsay Burrage, M.D., Ph.D., Associate Program Director of Residency Programs

Pengfei Liu, Ph.D., LGG Program Director

Weimin Bi, Ph.D., LGG Associate Program Director

ABMGG Residency & Fellowship Program Coordinator

Kara Mitchell

BAYLOR COLLEGE OF MEDICINE AND THE CHINESE UNIVERSITY OF HONG KONG JOINT CENTER FOR MEDICAL GENETICS

In 2016, Baylor College of Medicine and The Chinese University of Hong Kong signed a memorandum of understanding to establish the Baylor College of Medicine and Chinese University of Hong Kong Joint Center for Medical Genetics in Hong Kong with a vision to create a platform for training in clinical genetics, expert services for genetic disorders and collaborative research with cutting-edge genetic and genomic technology.

The aims of the Center are to (1) design, establish and conduct professional development activities and training in medical genetics and genetic counseling to fit the increasing need in Asia, (2) establish a leading referral center in Asia for prenatal and postnatal diagnosis and treatment for patients and families affected by genetic disorders, (3) conduct cutting-edge, interdisciplinary research that will lead to advances in screening, diagnosis and therapy of genetic disorders as well as new discovery of the underlying genetic mechanism of diseases, and (4) host an annual pan-Asian symposium on state-of-the art clinical genetics care and research.

Center Director: Fernando Scaglia, M.D.
GENETIC COUNSELING PROGRAM

The Baylor College of Medicine Genetic Counseling Program was accredited in February of 2018 and graduated its first class of eight students in June of 2020. The program now admits 9 students and has plans to increase enrollment further in the future. The 22-month Master of Science degree program is housed under the School of Health Professions and was founded with the financial and logistical support of the Department of Molecular and Human Genetics. The program provides students a transformative education in genomic medicine and the practice of genetic counseling. The outstanding clinical, laboratory and research faculty empower graduates to be empathic professionals with effective critical thinking skills. Clinical rotations include a variety of clinics offered both in-person and via telehealth with the following services: pediatric genetics at Texas Children’s Hospital and the Children’s Hospital of San Antonio, adult genetics at the Michael E. DeBakey VA Medical Center, Harris Health System, and Baylor Medicine at McNair Campus, and prenatal and reproductive genetics at Texas Children’s Pavilion for Women and Consultagene Clinic, among others. Program differentiators include the variant interpretation and counseling course developed in collaboration with the diagnostic laboratory, Baylor Genetics, and the diverse research opportunities available within the department and across the Texas Medical Center.

Program Leadership:
Daniel Riconda, M.S., C.G.C., Director
Salma Nassef, M.S., C.G.C., Associate Director
Lindsay Burrage, M.D., Ph.D., Medical Director
Baylor College of Medicine’s Clinical Genetics Program holds the position as the largest clinical genetics program in the country, with 14 clinics spanning across multiple genetics-based disciplines. The clinical program takes a collaborative approach that provides patients with the highest quality, individualized care available.

Our pediatric genetics clinic service provides inpatient care to complex and/or critically ill patients at Texas Children’s Hospital and several other hospitals within the Texas Medical Center and outside (TCH West Campus and The Woodlands Texas Children’s Hospital). The outpatient pediatric genetics clinics are among the largest genetics clinics in the country and see over 5,000 patients annually.

Specialty clinics within the Texas Children’s Genetics Clinic include the metabolic clinic, neurofibromatosis clinic, skeletal dysplasia clinic and the cancer genetics clinic. We also have many multidisciplinary team clinics like the Angelman Syndrome clinic, the Center for Genetic Disorders of Obesity, Mitochondrial Medicine Clinic, and the Gender Medicine Program. The Department of Molecular and Human Genetics clinical and genetic counseling faculty also staff joint clinics with other departments such as otolaryngology (otogenetics) and neurology (neurogenetics/tuberous sclerosis).

The Adult Genetics Clinic is also one of the largest genetics clinics in the country, providing inpatient and outpatient care exclusively for adult patients in four different
healthcare settings (Baylor Medicine, Harris Health, the Michael E. DeBakey VA Medical Center and through our virtual Consultagene Clinic). We see patients for a wide variety of indications including, but not limited to, intellectual disability, neurological conditions, cardiovascular conditions, connective tissue disorders, and for a personal or family history of cancer. In addition to our general genetics clinic, we have specialty clinics such as the Metabolic and Genetic Disorders of the Bone Clinic, Cancer Genetics Clinic, Neurogenetics Clinic, Cardiovascular Genetics Clinic, and Mitochondrial Medicine Clinic.

As the largest of its kind in the U.S., the Baylor Prenatal and Reproductive Genetics Clinic at Texas Children’s Pavilion for Women with its seven associated Texas Children’s community maternal-fetal medicine clinics is comprised of physicians and genetic counselors that specialize in prenatal and reproductive genetic risk assessment and the latest genetic testing technologies. Through its partnership with the department and the Texas Children’s Fetal Center, the clinic offers world renowned clinical and research expertise in prenatal and reproductive genetic screening, diagnostic testing and counseling. Prenatal and reproductive genetic services and counseling are also offered at Ben Taub Tower Specialty Clinics and virtually through the Consultagene Clinic.

By having a strong foundation of physicians and other team members, which include genetic counselors, metabolic nurses and dietitians, we achieve the optimal in patient care, while advancing the practice of medicine through genetics. Collectively, our goal is to improve the lives of our patients by providing valuable information from which they can make the best possible decisions.

Clinical Faculty

April Adams, M.D.
Carlos A. Bacino, M.D.
Mir Reza Bekheirnia, M.D.
Lindsay Burrage, M.D., Ph.D.
William J. Craigien, M.D., Ph.D.
Shweta Dhar, M.D., M.S.
Christine M. Eng, M.D.
Kevin Glinton, M.D., Ph.D.
Monika Weisz Hubshman, M.D., Ph.D.
Seema Lalani, M.D.
The Department of Molecular and Human Genetics is home to approximately 50 genetic counselors that cover a wide range of clinical subspecialties, as well as research and laboratory positions. Genetic counselors communicate complex genetics information to families in a way that is understandable and practical to them, while supporting patients and their family members throughout the genetics evaluation and testing process.

Prenatal genetic counselors provide services to patients throughout Houston and surrounding community areas, including Katy, The Woodlands and Sugar Land, and via telegenetic counseling through the Consultagene service. Prenatal genetic counselors often see couples who have an increased chance of having a child with a genetic condition or birth defect, women who will be over 35 years of age at the time of delivery, couples who have had recurrent miscarriages, couples who are carriers of a genetic condition or couples who have had abnormal genetic or prenatal screening tests, such as ultrasound or amniocentesis.

Pediatric genetic counselors often work as part of a team and evaluate children in the inpatient and outpatient setting at the Texas Children’s Hospital main campus and The Woodlands campus. They evaluate children in the general genetics clinics for a variety of indications, such as developmental delay, autism spectrum disorders, intellectual disability, inborn errors of metabolism, skeletal dysplasias, hearing loss and birth defects. They also see patients in many other subspecialty and multidisciplinary clinics for obesity, cystic fibrosis, hematology, cardiology, neurology, allergy and immunology and pediatric oncology.

Adult and cancer genetic counselors evaluate and offer genetic counseling services to patients at the McNair campus, Michael E. DeBakey VA Medical Center, Harris Health Clinic, and the Lester and Sue Smith Breast Center. Common indications for referral to an adult genetics clinic or genetic counselor include increased risk of hereditary cancer syndromes, such as breast and ovarian cancer, colon cancer and thyroid cancer, adults with intellectual disability or mitochondrial disorders.
In addition to the clinical genetic counselors, the Department has laboratory genetic counselors at Baylor Genetics who sign-out genetic test results, communicate results to physicians, genetic counselors and other providers and assist with genetic variant interpretation for complex genetic and genomic data. Genetic counselors who have a primary focus in research participate in clinical research activities and work closely with Baylor Genetics and clinical geneticists for new gene identification. Collaboration on various projects and sharing of genomic data is routinely performed with researchers, physicians and other genetic specialists around the world.

Genetic Counseling Faculty
Katie Chan, M.S., C.G.C.
Sandra Darilek, M.S., C.G.C.
Lauren Desrosiers, M.S., C.G.C.
Tanya N. Eble, M.S., C.G.C.
Laura I. Ellis, M.S., C.G.C.
Jamie Fong, M.S., C.G.C.
Rachel Franciskovich, M.S., C.G.C.
Georgiann Garza, M.S., C.G.C.
Amanda Gerard, M.S., C.G.C.
Hannah Helber, M.S., C.G.C.
Olivia Juarez, M.M.Sc., C.G.C.
Dana Knutzen, M.S., C.G.C.
Rebecca Littlejohn, M.S., C.G.C.
Pilar Magoulas, M.S., C.G.C.
Veena S. Mathur, M.S., C.G.C.
Liz Mizerik, M.S., C.G.C.
Jill Anne Mokry, M.S., C.G.C.
Andrea Moon, M.S., C.G.C.
Salma A. Nassef, M.S., C.G.C.
Daniel Riconda, M.S., C.G.C.
Patricia Robbins-Furman, M.P.H., B.S., C.G.C.
Sarah R. Scollon, M.S., C.G.C.
Tamara Solomon, M.S., C.G.C.
Haley Streff, M.S., C.G.C.
Melissa Stuebben, M.S., C.G.C.
Cathy Sullivan, M.S., C.G.C.
Patricia Ward, M.S., C.G.C.
Lauren Westerfield, M.S., C.G.C.

Genetic Counseling Staff
Taylor Beecroft, M.S., C.G.C.
Grant W. Bonesteelle, M.S., C.G.C.
Shannon Bonner, M.S., C.G.C.
Wanda Dosal, RN
Stacey Edwards, M.S., C.G.C.
Dina El Achi, M.S.
Mikaela K. Francisco, M.S., C.G.C.
Jessica Honkomp, M.S., C.G.C.
Shontiara Johnson, M.S.
Farah Ladha, M.S., C.G.C.
Emily Magness, M.S., C.G.C.
Bailey Mitchell, M.S.
Morgan Nutter, M.S.
Lisa Saba, M.S., C.G.C.
Roa Sadat, M.M.Sc., C.G.C.
Emily Soluczyk, M.S., C.G.C.
Ashley Spector, M.S., C.G.C.
Abigail Yesso, M.S., C.G.C.
Shelly Zelnick, M.S., C.G.C.
Established in February 2015, Baylor Genetics, a joint venture between Baylor College of Medicine and H.U. Group Holdings, Inc., strives to continue the tradition of genetic innovation and operational excellence. By building on the Department of Molecular and Human Genetics’s strengths in research and discovery, Baylor Genetics’ mission is to provide quality genetic testing services relevant to twenty-first-century precision medicine. Over the last 40 years, the laboratory has been at the forefront of introducing novel genetic testing modalities that have provided more tools to diagnose patients with genetic disorders. The innovative testing approaches developed at the laboratory include whole exome sequencing, Chromosomal Microarray Analysis (CMA), universal carrier screening, non-invasive prenatal testing for single gene disorders, metabolomics, and most recently, COVID-19. In addition, Baylor Genetics continues to offer high-quality comprehensive diagnostic services in all areas of genetic testing including cytogenetics, biochemical genetics, cancer genetics, mitochondrial genetic testing, and next-generation sequencing panels. The laboratory is located in Houston’s Texas Medical Center with over 200 employees, over 3,000 tests available and clients in all 50 states and in 16 countries. Baylor Genetics is well-equipped with cutting-edge diagnostic equipment, allowing it to efficiently generate the most accurate clinical genetic data.

Baylor Genetics is committed to its academic foundation through publications and grants to participate in federally funded large-scale sequencing projects. In addition, we...
are committed to the education and training of the next generation of clinical and laboratory diagnosticians through our participation in the ABMGG fellowship programs.

Diagnostic Laboratory Faculty

Carlos Bacino, M.D.
Weimin Bi, Ph.D.
Sau Wai Cheung, Ph.D., M.B.A.
Hongzheng Dai, Ph.D.
Sarah Elsea, Ph.D.
Christine Eng, M.D.
Ning Liu, Ph.D.
Pengfei Liu, Ph.D.
Linyan Meng, Ph.D.
Brian Yang Merritt, M.D.
Nichole Owen, Ph.D.
Katharina Schultze, Ph.D.
Janice Smith, Ph.D.
Qin Sun, Ph.D.
Vernon Sutton, M.D.
Liesbeth Vossaert, Ph.D.
Yue Wang, Ph.D.
Fan Xia, Ph.D.
Xiaonan Zhao, Ph.D.
The Office of Community Engagement and Diversity in the Department of Molecular and Human Genetics works alongside Baylor College of Medicine’s Office of Institutional Diversity, Equity and Inclusion. In addition to genetic education programs for the community at large, the office and the department’s Diversity and Inclusion Strategic Planning Committee have created a dashboard to guide future action steps to promote an environment that fosters inclusion, education and understanding for its faculty, trainees and staff. The office advances multiple approaches to education, recruitment and diversity and inclusion activities.

The Evenings with Genetics series has served the community for 16 years. The department partners with Texas Children’s Hospital to offer this free seminar series open to the public. A genetics faculty member paired with faculty from another specialty area, plus a parent expert speaker are highlighted at each seminar. The goals of the series are to provide current genetic and genomic information in a clear, plain-language manner, offer support and resources to families impacted by a genetic disorder and foster interdepartmental collaborations. Seminars include simultaneous translation to Spanish. During this past year, we celebrated our 16th anniversary with the second annual “Race and Genetics: Perspectives of Precision Medicine” webinar series during Black History Month.

Through a collaboration with the UT Texas Center for Disability Studies, the Texas Department of State Health Services and Texas Children’s, the office provides state-wide genetics outreach in the form of in-person events and webinars for the community as well as those for health professionals.

The Careers in Genetics and Genomics series (virtual) is provided annually to present the genetics and genomics career path to high school and undergraduate students. The office will offer “Understanding Genetic Variations” sessions at national student research meetings (Annual Biomedical Research Conference for Minority Students, Society for Advancement of Chicanos/Hispanics & Native Americans in Science) to introduce genetics and genomics and encourage participation in the field.

The Medical Genetics Diversity Visiting Students Program was developed by the office to provide underrepresented fourth-year medical students a 4-week clinical rotation beginning in 2022. In 2021, we began the Clinical Research Education Training Program (CRETP) to introduce underrepresented first and second-year medical students to the field of medical genetics. The virtual program, A White Coat and Genes: The Life of a Medical Geneticist, offers third and fourth-year medical students the opportunity to learn about careers in medical genetics from department faculty and students.

“Let’s Learn about One Another” is a series of interactive presentations that began in the summer of 2020 to address the social injustice climate. The “Let’s Learn” program includes perspectives from the department’s widely diverse members. The program has offered the “Let’s Learn about One Another: Understanding the African American Experience in America” (2020), “Let’s Learn about One Another: Understanding the Asian American and Pacific Islander Experience in America” (2021), and “Let’s Learn about One Another: Understanding the Hispanic/Latina/o Experience in America (2022) with faculty, graduate students, postdoctoral trainees and staff members sharing their experiences. The office also curates an online library of articles regarding diversity, inclusion and equity for department faculty, trainees and staff.

Co-Directors
Debra Murray, Ph.D.
Laura Rosales, Ed. D., M.B.A.

Diversity and Inclusion Strategic Planning Committee
Yangjin Bae, Ph.D.
Susan Fernbach, B.A., R.N.
Kevin Glinton, M.D.
Benny Kaipparettu, Ph.D.
David Li-Kroeger, Ph.D.
Graeme Mardon, Ph.D.
Liz Mizerik, M.S., C.G.C.
Chaya Murali, M.D.
Sandesh Nagamani, M.D.
Cameron Noreiga-Babb, B.S., M.P.H.
Gladys Pryor, B.S.
Brandy Thibodeaux, B.S.
Claudia Soler-Alfonso, M.D.
The research interests of the more than 70 primary research faculty members span important areas, such as:

- Bioinformatics
- Bacterial genetics
- Cancer genetics
- Cytogenetics
- DNA recombination
- Drosophila genetics
- Functional genomics
- Gene therapy
- Gene structure and expression
- Genome sequencing
- Genomic stability, replication and repair
- Mammalian development
- Metabolic basis for inherited human disease
- Mouse molecular genetics
- Neurogenetics
- Somatic cell genetics
- Yeast genetics
EREZ AIDEN, PH.D.

Assistant Professor, Department of Molecular and Human Genetics
Assistant Professor, Departments of Computer Science and Computational and Applied Mathematics, Rice University
Faculty Member, Graduate Programs in Genetics & Genomics and Quantitative & Computational Biosciences
CPRIT Scholar in Cancer Research
Emeritus McNair Scholar

Ph.D., Harvard University and Massachusetts Institute of Technology
Fellow, Society of Fellows, Harvard University

RESEARCH INTERESTS

A genome is a miraculous physical mechanism for compactly storing and rapidly accessing information. Recall that if you put a pair of headphones into your pocket, and pull them out a bit later, they’ve invariably become phenomenally extremely entangled. But the giant neurons of the sea hare, Aplysia, can take 200 trillion base pairs – half a petabyte of information, a genomic string the length of Long Island – and fold them up into a nucleus smaller than cubic millimeter, while keeping all those bits accessible at all times.

A central focus of our laboratory is the question of how this is achieved. How are the genomes of humans and other organisms folded, in three dimensions, inside the nucleus of a functioning cell? How is this folding process controlled? And how does this folding process, in turn, regulate other cellular processes? To answer these questions, we combine the development of new molecular technologies, high-throughput DNA sequencing and powerful computational and biophysical methods.

The lab is also extremely interested in the application of massive datasets - including, but not limited to, DNA sequence - as an approach to making previously intractable measurements possible. Three-dimensional genome sequencing is one example, but there are many, many others, ranging across many fields. Recently, our work led to the creation of the Google Ngram Viewer.

SELECTED PUBLICATIONS

BENJAMIN R. ARENKIEL, PH.D.
Associate Professor, Departments of Molecular and Human Genetics and Neuroscience
Faculty Member, Graduate Programs in Development, Disease Models & Therapeutics; Genetics & Genomics; Neuroscience; and Developmental Biology
McNair Scholar

Ph.D., University of Utah School of Medicine
Howard Hughes Medical Institute Postdoctoral Fellow, Duke University

RESEARCH INTERESTS

The main focus of our research is to elucidate the basic mechanisms that guide the formation and maintenance of neural circuits in the mammalian brain. Using the mouse, we apply multifaceted experimental approaches that combine genetic engineering, optical imaging, and electrophysiological recording techniques to better understand synapse and circuit function.

The blueprints for most neural circuits are specified by innate, genetic mechanisms. However, circuit architecture and function can be strongly influenced by neural activity and sensory experience. Towards better understanding the interplay between experience, synaptic connectivity, and circuit function, we are currently pursuing three main projects in our laboratory: 1) Identifying activity dependent- and neuropeptide signaling mechanisms that underlie synaptogenesis and circuit formation of adult-born neurons. 2) Mapping functional connectivity of brain circuits, with emphasis on the olfactory system, basal forebrain, and hypothalamus. 3) Elucidating signaling and circuit mechanisms that govern feeding behavior.

The long-term goal of our research is to form a deeper understanding of the mechanisms that guide synapse and circuit formation, with the ultimate hope of gaining insight towards repairing or replacing damaged or diseased nervous tissue. At the heart of this experimentation is the continued effort to develop novel tools and techniques to mark and manipulate neurons and their associated circuits.

SELECTED PUBLICATIONS

ELIZABETH ATKINSON, PH.D.
Assistant Professor, Department of Molecular and Human Genetics
Ph.D., Washington University in St. Louis
Postdoc, Harvard Medical School – Massachusetts General Hospital & Broad Institute

RESEARCH INTERESTS

The primary goal of the Atkinson Lab is to reduce disparities in genomics research across ancestries. We accomplish this by leveraging global genomic datasets and cutting-edge computational techniques to build and apply resources for the improved statistical genetic study of diverse human populations that genomics has so far underserved. Our work is centered around neuropsychiatric traits with a particular focus on admixed American populations, though many of the tools we build are broadly applicable across phenotypes and populations, giving them the potential for widespread impact on human health.

A necessary precursor to accounting for global diversity in genomics research is a thorough understanding of population history and evolution, which shapes the naturally occurring patterns of genetic variation. Therefore, the second line of inquiry explores characterizing key aspects of human evolution with ancestrally tuned evolutionary statistics using global DNA collections. Elucidating the forces shaping the genetic variation of key (brain) genes in modern populations is not only of significant academic interest but is vital for determining the appropriate methods for statistical and medical genomic analyses of diverse datasets.

We are in the leadership of multiple international consortia working to generate diverse datasets, including the Psychiatric Genomics Consortium Post-Traumatic Stress Disorder working group, Latin American Trans-Ancestry Initiative for Obsessive Compulsive Disorder, the All of Us Research Evenings with Genetics Program, and the Latin American Genomics Consortium.

SELECTED PUBLICATIONS

I am primarily devoted to clinical activities in the Department of Molecular and Human Genetics. I am involved in the diagnosis and management of pediatric patients with birth defects and rare genetic disorders. I am also interested in bone disorders and participate in the Skeletal Dysplasia Clinic at TCH. I am directly involved in the supervision and training of medical students, residents and fellows. As the Medical Director of the Cytogenetics Laboratory at Baylor Genetics, I have a particular interest in structural chromosomes abnormalities and genomic disorders (contiguous gene deletion/duplication syndromes), as well as the mechanism of origin of these chromosome anomalies:

Epigenetics and Disorders of Imprinting: I have worked in Angelman syndrome clinical research for 20 years. We have followed a large group of Angelman syndrome patients at Texas Children’s Hospital for developmental, clinical and EEG evaluations on a yearly basis (Natural History study). This study has allowed us to understand progression, complications and co-morbidities associated with this condition. We have also concluded two different clinical trials using betaine, creatine and folic acid/metformin to promote methylation and revert silencing of the paternal allele. Our group is participating in a phase II clinical research trial through a pharmaceutical company using a locked nucleic acid RO7248824 (antisense oligonucleotide drug) given intrathecally to establish dosage and safety. Our group is also involved in another antisense Phase II trial sponsored by IONIS (ION582) administered intrathecally. These antisense drugs attempt to activate the paternal UBE3A gene and ameliorate the symptoms of Angelman syndrome by altering patterns of imprinting. We currently run a multidisciplinary clinic for patients with Angelman syndrome that started with the support of the Angelman Syndrome Foundation.

Skeletal dysplasias: Through the sponsorship of several pharmaceutical companies, I am involved in different studies offering treatments in achondroplasia. This includes a phase 3 clinical research trial using a recombinant cartilage natriuretic peptide (CNP) also known as vosoritide (BMN-111), a drug we anticipate will promote linear and more proportionate skeletal growth in these patients. This drug was recently approved by the FDA for 5 years and older. We continue with a locked nucleic acid RO7248824 (antisense oligonucleotide drug) given intrathecally to establish dosage and safety. Our group is also involved in another antisense Phase II trial sponsored by IONIS (ION582) administered intrathecally. These antisense drugs attempt to activate the paternal UBE3A gene and ameliorate the symptoms of Angelman syndrome by altering patterns of imprinting. We currently run a multidisciplinary clinic for patients with Angelman syndrome that started with the support of the Angelman Syndrome Foundation.

Undiagnosed Disease Network (UDN): Our group is currently recruiting and studying patients with rare disorders under the auspices of the UDN consortium. This effort has been possible by a grant awarded by the NIH under the leadership of Dr. Brendan Lee and will give us a unique ability to characterize rare disorders, make new discoveries, and gain insight into novel genes and disease mechanisms. I am currently the co-PI of this effort.
RESEARCH INTERESTS

Chromosome Dynamics: Although genetic information is encoded in a one-dimensional array of DNA bases, all major DNA processes (replication, transcription and recombination) are controlled by changes in the three-dimensional structure of DNA. Large-scale structural features of chromosomes including the arrangement of important chromosomal sites (origins, termini and centromeres) and overall chromosome compactness change dramatically and predictably during the cell cycle. However, these features are difficult to measure using standard microscopy methods. Our lab is developing a novel chromosome painting technology to image individual domains within the entire chromosome in single bacterial cells. This method, inspired by in situ hybridization-based human karyotyping techniques, utilizes multi-color combinatorial labeling and high-resolution three-dimensional photography to generate whole genome maps of the chromosome. Our goal is to define the cell cycle program of chromosome movement in E. coli using a cell cycle synchronization apparatus we designed called the “baby cell machine.”

Chromosome Cohesion: In eukaryotes, replicated chromosomes are held together by linkages (cohesion) until they are separated by the mitotic spindle apparatus. Our lab showed that an analogous cohesion process occurs in bacteria, in which replicated DNA is linked together as it exits the replication fork, remaining stably attached for 10-20 minutes before segregating apart. Evidence suggests that bacterial cohesion is not protein (glue) based, but rather results from entanglement of sister chromosomes in a topological structure called a precatenane. Interestingly, cohesion occurs much more strongly in some regions of the E. coli chromosome, which we refer to as “snaps”. We are currently exploring models of how these centromere-like snaps are generated and what role they play in faithful chromosome replication, repair and segregation.

DNA Replication: In vitro, precatenanes form along DNA segments that are under positive helical tension (overwound). The presence of precatenanes behind replication forks in vivo implies that replicative helicases generate tension that outpaces the relaxing ability of topoisomerases (forks can travel at an astounding 1000 bp/sec!). Theoretically, this tension rapidly spins the replication fork causing the two replicated DNAs to wrap around each other. Our lab is investigating whether DNA-bound proteins act as topological barriers during replication, driving the formation of precatenanes. The basic enzymology of DNA replication is well conserved among all life, and it has much more strongly in some regions of the chromosome. Our lab showed that an analogous cohesion process occurs in bacteria, in which replicated DNA is linked together as it exits the replication fork, remaining stably attached for 10-20 minutes before segregating apart. Evidence suggests that bacterial cohesion is not protein (glue) based, but rather results from entanglement of sister chromosomes in a topological structure called a precatenane. Interestingly, cohesion occurs much more strongly in some regions of the E. coli chromosome, which we refer to as “snaps”. We are currently exploring models of how these centromere-like snaps are generated and what role they play in faithful chromosome replication, repair and segregation.

We expect that our work will lead to a better understanding of the factors that limit replication fork speed, cause replication fork stalling (quickly leading to double-strand breaks) and inhibit chromosome segregation. These events in humans are a major source of genomic instability and diseases including cancer.

SELECTED PUBLICATIONS

HUGO J. BELLEN, D.V.M., PH.D.
Chair in Neurogenetics at the Jan and Dan Duncan Neurological Research Institute
March of Dimes Chair in Developmental Biology

Professor, Departments of Molecular and Human Genetics and Neuroscience
Faculty Member, Graduate Programs in Development, Disease Models & Therapeutics; Genetics & Genomics; and Neuroscience

Business Engineer, Solvay, University of Brussels, Belgium
D.V.M., University of Ghent, Belgium
Ph.D., Genetics, University of California, Davis
Postdoc, Cell Biology, Biozentrum, University of Basel, Switzerland

RESEARCH INTERESTS
One of the main aims of the research in my lab is to elucidate the molecular basis of neurodegeneration. Since no unbiased genetic screens in model organisms were performed to sample genes that cause neurodegenerative phenotypes, we embarked on such a screen in fly photoreceptors and isolated 700 mutations corresponding to 163 complementation groups. This screen has provided a very rich resource of novel mutants for the fly community and has permitted us to dissect mechanisms for a variety of diseases, including Charcot-Marie-Tooth disease, Leigh Syndrome, and Friedreich’s ataxia. This screen has also led to the identification of mutations in 32 genes that encode proteins that are targeted to mitochondria. By exploring the molecular mechanisms of these rare diseases, we were able to determine that biochemical pathways that also play a role in Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Alzheimer’s Disease are affected. These pathways are now being studied intensely in the lab.

My lab as well as the laboratories of Michael Wangler and Shinya Yamamoto here at BCM and John Postlethwait and Monte Westerfield at the University of Oregon were selected by the Undiagnosed Diseases Network (UDN) to direct the Model Organism Screening Center (MOSC) for the UDN of the U.S. Through close collaborations with human geneticists and physicians, we have identified variants in human genes that are associated with neurological diseases in children. We have so far participated in the discovery of the genetic causes of 35 human diseases in the past five years. We are also studying some of these genes in depth to determine the molecular events that underlie these diseases to identify targets to develop drugs and have been successful in identifying drugs for four diseases.

My lab also plays an important role in developing new tools to manipulate flies as well as generating reagents for the fly community. I have been the PI of the Gene Disruption Project for 17 years. The reagents that we have produced include more than 25,000 single transposable element insertion stocks in more than 70 percent of all fly genes. These stocks are currently distributed by the Bloomington Drosophila Stock Center (BDSC). Most recently we created a novel transposable element named MiMIC that allows a staggering array of manipulations of the fly genome. In vivo the Bloomington Drosophila Stock Center (BDSC). Most recently we created a novel transposable element named MiMIC that allows a staggering array of manipulations of the fly genome.

We have used these lines to tag 1,000 genes with a multifunctional tag that allows us to determine gene expression patterns, immunoprecipitations, ChIP, and in vivo protein inactivation. Finally, in collaboration with Norbert Perrimon at Harvard, we have developed the CRIMIC technology. This allows us to insert a small multifunctional cassette in almost any gene using CRISPR.

One of the main aims of the research in my lab is to elucidate the molecular basis of neurodegeneration. Since no unbiased genetic screens in model organisms were performed to sample genes that cause neurodegenerative phenotypes, we embarked on such a screen in fly photoreceptors and isolated 700 mutations corresponding to 163 complementation groups. This screen has provided a very rich resource of novel mutants for the fly community and has permitted us to dissect mechanisms for a variety of diseases, including Charcot-Marie-Tooth disease, Leigh Syndrome, and Friedreich’s ataxia. This screen has also led to the identification of mutations in 32 genes that encode proteins that are targeted to mitochondria. By exploring the molecular mechanisms of these rare diseases, we were able to determine that biochemical pathways that also play a role in Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Alzheimer’s Disease are affected. These pathways are now being studied intensely in the lab.

My lab as well as the laboratories of Michael Wangler and Shinya Yamamoto here at BCM and John Postlethwait and Monte Westerfield at the University of Oregon were selected by the Undiagnosed Diseases Network (UDN) to direct the Model Organism Screening Center (MOSC) for the UDN of the U.S. Through close collaborations with human geneticists and physicians, we have identified variants in human genes that are associated with neurological diseases in children. We have so far participated in the discovery of the genetic causes of 35 human diseases in the past five years. We are also studying some of these genes in depth to determine the molecular events that underlie these diseases to identify targets to develop drugs and have been successful in identifying drugs for four diseases.

My lab also plays an important role in developing new tools to manipulate flies as well as generating reagents for the fly community. I have been the PI of the Gene Disruption Project for 17 years. The reagents that we have produced include more than 25,000 single transposable element insertion stocks in more than 70 percent of all fly genes. These stocks are currently distributed by the Bloomington Drosophila Stock Center (BDSC). Most recently we created a novel transposable element named MiMIC that allows a staggering array of manipulations of the fly genome. In vivo the Bloomington Drosophila Stock Center (BDSC). Most recently we created a novel transposable element named MiMIC that allows a staggering array of manipulations of the fly genome.

We have used these lines to tag 1,000 genes with a multifunctional tag that allows us to determine gene expression patterns, immunoprecipitations, ChIP, and in vivo protein inactivation. Finally, in collaboration with Norbert Perrimon at Harvard, we have developed the CRIMIC technology. This allows us to insert a small multifunctional cassette in almost any gene using CRISPR. We are in the process of inserting these very versatile tags in thousands of genes.

I have excellent resources via NIH and private foundations and I am truly dedicated to graduate education and postdoctoral training as is obvious from the success of my former trainees.

WEBSITE: FLYPUSH.RESEARCH.BCM.EDU

SELECTED PUBLICATIONS

Lin G, Lee PT, Chen K, Miao D, Tan KL, Zuo Z, Lin WW, Wang L, Bellen HJ (2018). Phospholipase A2G6, a Parkinsonism-associated gene, affects Vps26 and Vps35, retromer function, and ceramide levels, similar to the Bloomington Drosophila Stock Center (BDSC). Most recently we created a novel transposable element named MiMIC that allows a staggering array of manipulations of the fly genome in vivo. So far more than 17,000 lines have been created, of which 7,500 have been deposited in the BDSC. We have used these lines to tag 1,000 genes with a multifunctional tag that allows us to determine gene expression patterns in vivo, immunoprecipitations, ChIP, and in vivo protein inactivation. Finally, in collaboration with Norbert Perrimon at Harvard, we have developed the CRIMIC technology. This allows us to insert a small multifunctional cassette in almost any gene using CRISPR. We are in the process of inserting these very versatile tags in thousands of genes.

I have excellent resources via NIH and private foundations and I am truly dedicated to graduate education and postdoctoral training as is obvious from the success of my former trainees.

WEBSITE: FLYPUSH.RESEARCH.BCM.EDU
RESEARCH INTERESTS

The overall focus of our lab is to understand one of the most basic questions in biology: how do cells perceive and deal with stress? Stress is a universal feature of all cellular life. Whether it concerns abiotic (e.g., temperature) or biotic stress (e.g., viral infection) stress, cells/organisms need to adapt to their ever-changing environment. Protein aggregation is a hallmark of a stressed cell, so how do cells protect themselves? It is becoming increasingly clear that cells undergo broad (reversible) spatial and biophysical rearrangements of their entire proteome in times of stress, yet the regulatory and organizational principles remain almost completely unresolved. Biomolecular condensates (BMCs) have emerged as key stress-responsive compartments, and our work has indeed shown that such assemblies allow cells to sense and respond to stress.

Protein aggregation and the stress response are intimately tied to human disease—whether it concerns age-related stresses or exposure to environmental/physical stresses in neurodegenerative disease, the cellular stress caused by hypoxia and chemotherapy in the tumor microenvironment, or the corruption of the host proteostatic machinery in infectious disease. Stress and the associated responses modulate the onset and progression of virtually every human disease. It therefore may come as no surprise that defects in BMCs are associated with several human diseases and the aging process. Yet, we still have a very limited understanding of whether such BMC alterations are adaptive or actually driving dysfunction and whether we can drug them. Our lab addresses this open question by using a multidisciplinary approach—spanning biophysics to modeling in vivo—to (A) untangle how the biophysical stress response is regulated and (B) engineer new tools to therapeutically target it in aging and human disease.

We mostly focus on neurodegenerative diseases and brain cancer but understand that the same molecular processes underlying these conditions are not exclusively limited to humans. Indeed, evolution has already found solutions to many of the problems we face in human medicine today. For example, while the aging human brain is incredibly susceptible to protein aggregation, other organisms seem to defy the biological limits of life and are able to maintain proteostasis in the harshest of environments. It is therefore that we are teaming up with collaborators from around the world to study stress-tolerant organisms to understand the molecular underpinnings of their resilience. Figuring out how these organisms prevent proteins from aggregating will highlight new molecular processes underlying these conditions are not exclusively limited to humans. Indeed, evolution has already found solutions to many of the problems we face in human medicine today. For example, while the aging human brain is incredibly susceptible to protein aggregation, other organisms seem to defy the biological limits of life and are able to maintain proteostasis in the harshest of environments. It is therefore that we are teaming up with collaborators from around the world to study stress-tolerant organisms to understand the molecular underpinnings of their resilience. Figuring out how these organisms prevent proteins from aggregating will highlight new strategies to boost proteostasis in protein-aggregation diseases.

In all, a multi-model and evolution-resilience. For example, while the aging human brain is incredibly susceptible to protein aggregation, other organisms seem to defy the biological limits of life and are able to maintain proteostasis in the harshest of environments. It is therefore that we are teaming up with collaborators from around the world to study stress-tolerant organisms to understand the molecular underpinnings of their resilience. Figuring out how these organisms prevent proteins from aggregating will highlight new strategies to boost proteostasis in protein-aggregation diseases.
RESEARCH INTERESTS

Personalized genomics to identify genes causing Mitochondrial Disease

Mitochondrial disease has an incidence of 1/5000 and can affect every organ system. Childhood-onset mitochondrial disease most often results from recessive mutations in the nuclear genome; however, the vast majority of cases remain without a molecular diagnosis and no effective treatments thus underscoring the critical need to identify the genetic aberrations driving these disorders. We are leveraging a personalized functional genomics approach combining genome-wide sequencing, mitochondrial functional profiling in patient cells, and functional genomics to identify validated novel mitochondrial disease genes. This project will significantly advance the diagnosis and treatment of mitochondrial disease, as well as provide new insights into the mechanisms underlying the pathology of mitochondrial respiratory chain disorders and commonly occurring conditions associated with mitochondrial dysfunction such as cancer, diabetes and neurodegeneration.

SELECTED PUBLICATIONS

RESEARCH INTERESTS

During the past two decades many genes triggering neurological diseases have been identified. Some of these diseases are caused by gain of function mutations and/or impaired proteolysis of the respective proteins. Among these proteins are huntingtin (Huntington’s disease, HD), alpha-synuclein (Parkinson’s disease, PD) and the tau and amyloid precursor proteins (in Alzheimer’s AD). On the other hand, diseases like Rett Syndrome are caused by loss of function mechanisms.

Despite many significant advances, we still have a poor understanding of what happens between the triggering of the disease by the faulty protein and the ultimate death of the neuron. What are the molecular mechanisms and gene networks driving pathogenesis? What mechanisms are deployed by neuron and glia to compensate CNS dysfunction? Can we identify therapeutic targets common to more than one disease?

To address these questions, we integrate computational and wet-lab approaches using a combination of experimental model systems including Drosophila and mice, as well as neuronal primary cultures and iPSC-derived human neurons. Importantly, we have generated fruit fly (Drosophila) models for many neurological and neuromuscular disorders that recapitulate key neuropathological phenotypes observed in patients. For example, Drosophila models of the neurodegenerative diseases spinocerebellar ataxia type 1 (SCA1), Huntington’s, Parkinson’s and Alzheimer’s show late onset, progressive neuronal degeneration and disease-specific neuropathology. We use these Drosophila models as a discovery tool together with state-of-the-art robotic instrumentation they allow us to carry out high-throughput, genome-wide genetic screens to identify genetic modifiers and therapeutic targets—genome-scale screens in vivo are possible in Drosophila but not feasible using mouse models. These genetic approaches are integrated with human and model system -omic datasets. Network analyses allow us to nominate highly validated targets for in-depth studies using mice and human neurons.

In sum, we use a multidisciplinary, cross-species, approach for comparative analysis of modifier genes and pathogenic mechanisms. Our goal is to identify therapeutic opportunities that may be applied to more than one neurological disorder.
LINDSAY C. BURRAGE, M.D., PH.D.

Assistant Professor, Department of Molecular and Human Genetics
Faculty Member, Graduate Programs in Genetics & Genomics and Development, Disease Models & Therapeutics

M.D., Ph.D., Case Western Reserve University
Pediatrics Residency, University Hospitals of Cleveland
Medical Genetics Residency, Baylor College of Medicine
Biochemical Genetics Fellowship, Baylor College of Medicine

RESEARCH INTERESTS

As a physician-scientist and clinical biochemical geneticist, I have a long-standing interest in the pathophysiology of inborn errors of metabolism and their utility as models for more common disorders. Our group uses laboratory-based approaches in murine models and clinical studies to gain greater understanding of the etiology of long-term complications of inborn errors of metabolism with a special focus on urea cycle disorders in order to optimize management strategies for our patients.

One main focus of my research program is to gain a greater understanding of chronic liver dysfunction in individuals with urea cycle disorders. As an investigator in the Urea Cycle Disorders Consortium (UCDC) of the Rare Diseases Clinical Research Network, I have pursued a variety of data-mining projects using data from the UCDC Longitudinal Study of Urea Cycle Disorders. Using this data, we discovered an increased prevalence of chronic hepatocellular injury in two distal urea cycle disorders (argininosuccinate lyase deficiency and arginase deficiency) compared to disorders impacting enzymes that are more proximal in the cycle. To follow-up this work, we are performing a more comprehensive assessment of liver disease using serum biomarkers and novel imaging techniques in individuals with urea cycle disorders.

Our clinical study of hepatic complications complements our laboratory-based work in the murine model of argininosuccinate lyase deficiency (ASLD). We are using an ASL-deficient mouse model to investigate mechanisms underlying the chronic hepatic complications observed in our patients. The ASL-deficient mice model the human disorder with urea cycle dysfunction, nitric oxide (NO) deficiency, and chronic hepatocellular injury with hepatomegaly. In addition, as in human patients with the disorder, we have recently discovered hepatic glycogen accumulation and impaired hepatic glycogenolysis in these mice. We are currently dissecting the role of altered energy metabolism and hepatic glycogen accumulation in ASL-deficient mice. We are also exploring molecular and biochemical mechanisms by which ASL deficiency causes chronic liver disease using in vitro and in vivo models.

To complement my independent research program, I am also involved in a variety of large interdisciplinary research teams focusing on various aspects of rare disease research. As an investigator in the Urea Cycle Disorders Consortium, I am involved in a wide variety of multi-center clinical research initiatives focused on urea cycle disorders. Locally, at BCM, I have a leadership role in the sequence analysis team (e.g. whole exome and whole genome) for the Baylor College of Medicine site for the Undiagnosed Diseases Network (UDN). The work of our team has led to discovery of multiple potential new disease genes and phenotypic expansion in the setting of a greater understanding of the etiology of long-term complications of inborn errors of metabolism and their utility as models for more common disorders. To facilitate pre-clinical studies to investigate therapies for these disorders.

SELECTED PUBLICATIONS

HSIAO-TUAN CHAO, M.D., PH.D.

McNair Scholar

Assistant Professor, Departments of Molecular and Human Genetics, Pediatrics-Neurology and Neuroscience

Associate Program Director, Child Neurology Residency-Basic Neuroscience Track

Investigator, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital

M.D., Baylor College of Medicine

Ph.D., Baylor College of Medicine

Intern, Pediatrics, Texas Children’s Hospital

Resident, Pediatric Neurology, Texas Children’s Hospital

RESEARCH INTERESTS

As a physician-scientist, my efforts are primarily focused on understanding the genetic and neuro-physiologic underpinnings of neurodevelopmental disorders such as intellectual disability, epilepsy, autism, schizophrenia and other neuropsychiatric conditions. In particular, one emerging theme in the field is that disrupted inhibitory neuronal development and function has been found in association with many neurologic and psychiatric disorders. This would be consistent with the growing body of knowledge that inhibitory neurons are highly diverse and key for virtually all aspects of neurobiology from neural circuit development to information processing. Therefore, elucidating the genetic etiologies of inhibitory neuronal development and function has great potential to advance our understanding of inhibitory neurobiology in health and disease. However, determining the genetic cause is only the first step. The critical advance needed for translation of human genetic studies into clinical applications is to identify the consequences of genetic alterations at the molecular, cellular, neural network and whole-organism levels. This mechanistic dissection of neurodevelopmental disorders bridges molecular function to disease pathogenesis, which is crucial for the development of effective targeted therapeutics.

Our goal is to determine the role of cerebro-cerebellar excitatory and inhibitory neuronal dysfunction in the pathogenesis of neurodevelopmental and neuropsychiatric disorders by deciphering how genetic alterations perturb neurotransmission in the brain, impact neural development and lead to abnormal neurologic output. In the Chao Lab, we integrate cross-species approaches in humans to uncover the genetic etiologies of neurodevelopmental disorders, fruit flies to elucidate the molecular pathways and mice to explore the cascade of events in the mammalian brain and develop pre-clinical studies. A variety of approaches and techniques are employed in our laboratory including genetically engineered mouse and fruit fly models, functional analyses with electrophysiology, imaging, transcriptomics, molecular and cellular assays and behavioral profiling.

In addition to the laboratory research activities, I am a member of the Undiagnosed Diseases Network (UDN) and focus clinical studies on developmental epileptic encephalopathies and EBF3-related autism spectrum and neurodevelopmental disorders. In 2017, we established a multidisciplinary EBF3-HADDs clinic at TCH. We now follow the largest group of EBF3-related HADDs and 10q26 deletion syndrome patients to date in a single institution. Through the clinic, we conduct developmental, clinical and genetic evaluations on a yearly basis. This natural history study allows us to expand our understanding of the genotype-phenotype correlations, progression, complications and co-morbidities associated with this condition. The findings from the clinical study also inform our laboratory research efforts to understand how gene disruptions alter inhibitory and excitatory neuronal development, perturb neural network activity and lead to cognitive and behavioral abnormalities in neurodevelopmental and psychiatric disorders.

SELECTED PUBLICATIONS

PRIMAR Y RESEARCH FACULTY

RUI CHEN, PH.D.

Professor, Department of Molecular and Human Genetics; Human Genome Sequencing Center
Faculty Member, Graduate Programs in Genetics & Genomics; Quantitative & Computational Biosciences; and Developmental Biology

Ph.D., Baylor College of Medicine
Pastdoc, Baylor College of Medicine

RESEARCH INTERESTS

Our lab is broadly interested in identifying genetic factors underlying human diseases, investigating molecular mechanisms of disease using animal models, and developing novel therapeutic approaches. We are currently focusing on:

Genetics of human inherited retinal degenerative diseases: Collectively, ocular diseases affect a large population in the world with 40 million people blind and another 100 million with substantial visual impairment. Together with our collaborators, we are currently working on identifying genes involved in various inherited retinal diseases (IRD), such as Leber congenital amaurosis (LCA), Usher syndrome, retinitis pigmentosa (RP), cone and rod dystrophy, and Stargardt’s disease. So far, we have recruited over 7,000 patients with IRDs across the world. A combination of next-generation sequencing (NGS) based panel, whole exome, and whole genome sequencing has been conducted. These efforts have led to accurate molecular diagnoses of about 70% of the patients. In addition, we have identified and published 15 new IRD-associated genes. Continued investigation of the underlying genetics of unsolved IRD patients is one of our main focuses, including but not limited to identifying novel IRD-associated genes, improving our ability to identify and interpret complex or non-coding mutations, and exploring digenic and oligogenic complex inheritance.

Molecular mechanisms and novel therapeutic of retinal degenerative diseases: We will use mice as the model to investigate the molecular mechanism of IRD diseases. From the list of novel IRD genes identified in our group, we have selected and generated knock-out and/or knock-in mice models for several genes, such as Spata7, Cwc27, and Reep6, that are either currently under-investigated or represent new genetic pathways. A combination of genetic, genomic, and biochemical approaches is used to characterize these mouse models and elucidate the underlying molecular mechanism of the disease. In parallel, using the engineered mice as the model, we have performed rAAV-based gene therapy. Furthermore, we are exploring the idea of developing novel therapy methods that can address a significant portion of IRD patients by targeting converging pathways and/or downstream effector genes. Finally, the cell-based therapy approach is also being explored.

New non-human primate model for human diseases: One major limitation to the development of effective therapies is the use of animal models that poorly replicate human conditions. Well-defined NHP models that are more predictive of human conditions are necessary to more efficiently advance new therapies. In collaboration with multiple primate centers across the country, we have conducted molecular screens for over 2,000 individual monkeys carrying a spontaneous occurred mutation in IRD and other human diseases. We have now identified and established the breeding colony carrying PDE6C mutations. In addition, carriers with a mutation in many genes associated with IRD and other human diseases have been identified. These models will serve as an invaluable resource for future therapy development and mechanistic studies.

Single-cell genomics and Human cell atlas: Single-cell omics is a rapidly growing new field that provides many advantages over traditional ‘bulk’ tissue profiling methods, such as the ability to resolve intratissue heterogeneity in cell types, profile the disease microenvironments, and study rare subpopulations. Over the last several years, single-cell genomic and transcriptome methods have had major impact on many areas of biomedical research. In addition to single-cell genomic and transcriptome method, additional omics technologies, such as chromatin profiling, DNA methylation, and proteomics, are under rapid development. Together these single-cell omics technologies are becoming essential tools that are revolutionizing many diverse fields of biomedical research. Our lab has applied this emerging technology to our research and is also actively engaged in expanding the application and further developing the technology. We are funded by the Chan Zuckerberg Initiative (CZI) as part of the Human Cell Atlas (HCA) Seed Network project, particularly focusing on generating a reference map for the human retina at the single cell resolution.

SELECTED PUBLICATIONS

CHONGHUI CHENG, PH.D.

Professor, Departments of Molecular and Human Genetics and Molecular and Cellular Biology; Lester and Sue Smith Breast Center
Faculty Member, Graduate Programs in Cancer & Cell Biology and Genetics & Genomics
CPRIT Scholar in Cancer Research

M.D., Peking University Health Science Center
Ph.D., Sloan-Kettering Institute/Cornell University Weill Graduate School of Medical Sciences
Postdoc, Massachusetts Institute of Technology

RESEARCH INTERESTS

In the Cheng lab, we strive to understand the fundamental questions of how RNA regulation controls cellular processes in normal biology and in the context of cancer. Working at the interface of RNA splicing and breast cancer biology, our current focus is on the regulation of breast cancer metastasis driven by alternative splicing. We use molecular biology, genomics and bioinformatics approaches in conjunction with genetic models and patient samples to discover rules and networks that regulate metastasis and associated processes. We work closely with physician-scientists and aim to apply our findings from basic research to the development of prognostic markers and therapeutics for the treatment of breast cancer.

The developmental program, Epithelial-Mesenchymal Transition (EMT), is frequently re-activated in metastatic and recurrent tumors. Our work provided a conceptual understanding depicting a causal role for alternative splicing in EMT and breast cancer recurrence. We found that splice isoform switching of the CD44 gene must take place in order for cells to undergo EMT. We also discovered a novel splicing-mediated pathway that drives cancer metastasis. We demonstrated that the RNA binding protein hnRNPM reprograms alternative splicing including CD44 and promotes a breast cancer metastatic phenotype. By competitive binding on cis-regulatory RNA elements, hnRNPM activates a mesenchymal splicing program in a cell-type restricted manner, emphasizing a tightly regulated splicing program during tumor metastasis. We are combining patient data biocomputing analysis with cell-based and animal experiments to determine the networks of RNA regulation that govern the phenotype of breast cancer metastasis.

In collaboration with nano-technology engineers, we developed the “NanoFlare” method that enables the detection and isolation of live circulating tumor cells (CTC), establishing a platform to study splicing-mediated cancer cell plasticity and phenotypes in patient-derived samples. We are continuing this collaboration to develop novel tools for the prognosis and diagnosis of breast cancer.

We have been intrigued by the fact that nearly all human genes are detected to undergo alternative splicing, vastly expanding the human proteome. Therapeutic resistance of promising anti-tumor drugs, such as the anti-HER2 antibody Trastuzumab and the B-RAF(V600E) inhibitor Vemurafenib, is now known to be caused by aberrantly spliced HER2 and B-RAF. Despite these important observations, alternative splicing in cancer has remained largely an untargeted territory. We are actively looking for dedicated research fellows to join us to understand the contribution of RNA regulation in breast cancer metastasis and to apply it to clinical settings.

SELECTED PUBLICATIONS

WILLIAM J. CRAIGEN, M.D., PH.D.

Professor, Departments of Molecular and Human Genetics, Molecular Physiology and Biophysics, and Pediatrics
Facility Member, Graduate Programs in Genetics & Genomics; Development, Disease Models & Therapeutics; and the Clinical Translational Research Certificate of Added Qualification (CTR-CAQ) program
Director, Neurofibromatosis Clinic, Texas Children’s Hospital

M.D., Ph.D., Baylor College of Medicine
Fellow, Medical Genetics, Baylor College of Medicine
Resident, Pediatrics, Baylor College of Medicine

RESEARCH INTERESTS

Mitochondrial Function: Mitochondria are now recognized to play a variety of important physiologic roles in various processes beyond ATP synthesis, including programmed cell death (apoptosis), retrograde signaling, cellular proliferation and the regulation of intermediary metabolism. I have a longstanding interest in the molecular basis of these processes, both at a basic research level and as they apply to diagnostics and clinical practice.

Human Genetic Disorders: Despite advances in identifying human metabolic diseases, pathophysiologic mechanisms are poorly understood and specific treatment strategies lacking. I continue to be involved in both the clinical and molecular characterization of inborn errors of metabolism. As a clinical biochemical geneticist, I participate in the Undiagnosed Diseases Network (UDN) in discovering novel disease genes. I also serve as the co-chair of the Metabolism Working Group of the ClinGen consortium, where we strive to curate disease-causing variants in genes that cause metabolic disorders.

SELECTED PUBLICATIONS

RESEARCH INTERESTS

Our laboratory is studying epigenetic regulation for aging and oncogenesis. Aging is the single greatest risk factor for diseases that are principal causes of mortality, including cardiovascular diseases, diabetes, neurodegenerative diseases and infectious diseases. A breakthrough in aging research resulting in even moderate retardation of aging and a delay in the onset of age-associated diseases, such as cancer, would have a tremendous impact on the quality of life for the public. However, aging and how it contributes to the development of age-associated diseases remain poorly understood. Epigenetic changes, including histone modifications and proteomes, are critical regulatory mechanisms, involved in all developmental processes including aging and age-associated diseases. The goal of our research is to discover novel chromatin and proteomics regulation pathways that modulate longevity and regulate the development of age-associated diseases, such as cancer. These mechanistic studies will form the basis for the future development of therapeutic targets for treating age-associated diseases and improving human health span.

Replicative aging of budding yeast has been a powerful system for aging studies, providing fundamental genetic and molecular insights into both cellular and organismal aging. Studies of chromatin biology have also immensely benefited from the yeast model since it provides a uniquely tractable system for such studies and because many molecular mechanisms of chromatin are highly conserved from yeast to complex eukaryotes. We use budding yeast replicative aging as a model to study how epigenetic regulations can modulate longevity. Our earlier work was among the first to demonstrate that changes in epigenetic markings can causatively alter lifespan in the budding yeast. We later discovered age-associated cryptic transcription and showed that suppressing it through transcription regulation, DNA damage response, cellular stress response, etc. Further studies are currently carried out in our lab to elucidate the molecular mechanisms and their causal relationship to aging.

Stem cell aging and cellular senescence are important processes that contribute to the aging pathology and development of cancer. As a complement to our yeast replicative aging model, we are using mammalian primary cell lines and adult stem cells to study whether and how chromatin and epigenetic regulation pathways identified in yeast are involved in stem cell aging and cellular senescence. Our recently published study demonstrates that age-associated cryptic transcription that we initially discovered in yeast is also a hallmark of aged mammalian stem cells, as well as a broad range of tissues, providing valuable insights into the aging processes in mammals.

SELECTED PUBLICATIONS

SHWETA DHAR, M.D., M.S.
Associate Professor, Department of Molecular and Human Genetics
Medical Director, Adult Genetics Clinic
Section Chief, Internal Medicine - Genetics, Michael E. DeBakey VAMC

MBBS, NHL Municipal Medical College
Resident, Pathology & Microbiology, The Gujarat Cancer and Research Institute
M.S., Stephen F. Austin University
Resident, Internal Medicine, New York INF Beekman Downtown Hospital
Fellow, Medical Genetics, Baylor College of Medicine

RESEARCH INTERESTS
As the Medical Director for the Adult Genetics Clinics at BCM, I am proud to say that this is one of the largest Adult Genetics Service in the country. My primary clinical focus lies in the diagnosis and management of adults with genetic conditions, known or suspected. These include diagnosis and management of single gene disorders, chromosomal disorders and familial cancer syndromes, risk assessment for cancer and reproductive planning as well as testing for known genetic disorders in the family. I have developed an interest and expertise in the management of connective tissue disorders in adults, particularly Ehlers Danlos Syndrome (EDS) and run a specialized EDS clinic. I am also involved in the education of medical students at BCM particularly in the field of adult genetics, I direct the Genetics course for MS2 and am always looking for opportunities to enhance the genetic education of our medical students and residents through various electives. The Genetics & Genomics Pathway at BCM was established in 2011 and is one of the first such medical pathways in the nation. As one of the pathway directors, I ensure that students get an unparalleled experience in genetics through their medical school career at BCM. My research activities include the diagnosis of rare genetic disorders through the Undiagnosed Disease Network Project currently ongoing at BCM in collaboration with several other centers in the country. Finally, through my position as chair of the Adult Genetics Special Interest Group (SIG) at ACMG, I was able to launch the Adult & Cancer Diagnostic Dilemmas session at the annual meeting.

SELECTED PUBLICATIONS

RESEARCH INTERESTS

Aggression is a complex social behavior that is influenced by numerous genetic and environmental factors. Neither the genes underlying this behavior nor its neurobiological mechanism(s) are very well worked out. Much of the aggressive behavior observed in nature is directed towards animals of the same species, so-called intraspecific aggression, and revolves around competition for limited resources in the environment, food and mating partners. Most if not all animals show some form of aggression which suggests that the fundamental aspects of aggressive behavior may well be conserved throughout the animal kingdom. Even though aggression is a normal behavior necessary for animals to successfully compete and contribute to the survival of the animal and the species, aggression can also take on pathological forms. Numerous human diseases are characterized by an aggression component.

In the past, we have pursued two angles to start to understand the neurobiological basis of aggression in Drosophila melanogaster. In a first set of experiments, we performed selection on a wild-type strain using a very specific selective pressure in a population-based environment. We picked animals for further breeding that performed a rare but highly aggressive behavioral element known as escalated fighting in which males reciprocally lunge at each other and box and tussle in order to gain control over a territory. After the selected lines showed reliably different levels of aggression from control strains, we performed microarray expression experiments to look for changes in gene expression in the heads of the high and low aggression strains. This resulted in a list of candidate genes, some of which as individual mutations partially recapitulated the phenotype. In a set of follow-up experiments, we analyzed the effect of two neuromodulators, known to affect aggression in mammals. Both these modulators, serotonin (5-HT) and neuropeptide F (npf) strongly affect aggression in the fly, albeit not exactly in the same way.

Our research goal is to continue to dissect the genetics and neurobiological mechanisms of aggressive behavior in Drosophila melanogaster, using the many sophisticated genetic, cell biological and neurobiological tools that are available in this species. Eventually, we want to investigate whether the mechanisms and genes identified in the vinegar fly are conserved in vertebrate species including mammals.
FLORENT ELEFTERIOU, PH.D.
Professor, Departments of Molecular and Human Genetics and Orthopedic Surgery
Associate Director, Center for Skeletal Medicine and Biology
Ph.D., Claude Bernard University
Postdoc, Baylor College of Medicine

RESEARCH INTERESTS
Our research aims at understanding how the skeleton forms, grows, mineralizes, ages, repairs and communicates with other tissues in health and diseases.

One main focus of the laboratory is on the etiology of the skeletal maladies observed in individuals with neurofibromatosis type I (NF1). We are particularly interested in the fracture non-union and dystrophic scoliosis observed in some of these patients. We use genetic and pharmacological strategies to identify both cells of origin and molecular abnormalities causing these orthopedic conditions, with the goal of designing and testing novel therapeutic strategies to improve bone mass, bone strength and bone repair in children with NF1. These studies also provide critical insights into the role of neurofibromin, the RAS-GAP protein encoded by the NF1 gene, in endochondral bone formation, remodeling, repair and mineralization.

A second focus area of the laboratory is related to the interaction between the autonomic nervous system and bone cells. Our current emphasis is on determining the role of the endogenous sympathetic and parasympathetic nervous systems in the regulation of bone homeostasis, and on addressing the biological and clinical relevance of these preclinical findings. This leads us to study the role of the norepinephrine transporter and conditions including bone aging, depression and Alzheimer’s disease and their impact on bone remodeling.

A third active line of research in the laboratory revolves around the biology of chondrocytes, the cells of cartilaginous tissues that allow bone elongation during the development and protection of joint articular surfaces in adults. Through our focus on the transcription factor **TonEBP/Nfat5**, we investigate how chondrocytes survive and function in their hyperosmotic, avascular and low nutrient environment.

SELECTED PUBLICATIONS

SARAH H. ELSEA, PH.D.

Professor, Department of Molecular and Human Genetics
Faculty Member, Graduate Program in Development, Disease Models & Therapeutics
Member, Dan L Duncan Comprehensive Cancer Center
Director, Clinical Genomics, Human Genome Sequencing Center - Clinical Laboratory

Ph.D., Vanderbilt University
Postdoc, Baylor College of Medicine
Fellow, Clinical Biochemical Genetics, Baylor College of Medicine

RESEARCH INTERESTS

Despite many advances in the diagnosis of rare diseases, individual genetic variation and the pathophysiological mechanisms underlying these complex disorders are often poorly understood. Our research goals are to define the biochemical mechanisms and molecular pathways impacted by rare disease, particularly neurodevelopmental, neurodegenerative and neurometabolic disorders complicated by obesity and circadian rhythm defects, including autism, intellectual disability, seizures and behavioral phenotypes. Clinical and molecular analysis of neurometabolic conditions, such as citrate transporter deficiency, AADC deficiency, and SSADH deficiency and multiple genomic disorders, wherein deletion or duplication of a portion of the genome is the primary underlying etiology leading to altered gene dosage, are the primary areas of investigation in the Elsea Lab.

We are developing and translating into clinical practice personalized medicine approaches for neurodevelopmental, neurogenerative and metabolically-driven conditions utilizing genomic, metabolomic and transcriptomic approaches to improve diagnosis, disease management and quality of life for individuals with rare disease. To improve diagnosis and genomic variant interpretation and to address the need for a broad-based functional metabolic screen that goes beyond traditional testing, we developed at Baylor Genetics a clinical untargeted metabolomics pipeline for diagnosis and management of inborn errors of metabolism. Global MAPS offers a functional genomics approach to clinical genomic variant interpretation and has facilitated biomarker discovery and development of metabolomic profiles for diagnosis and therapeutic management for multiple metabolic conditions. Further supporting efforts in personalized medicine, the large-scale projects in the BCM-Human Genome Sequencing Center, such as All of Us, provide insight into genomic variation in diverse populations and facilitate personalized medicine approaches to medical care.

We incorporate multiomics technologies to interrogate mouse, cellular, and other rare disease models. Integrating genomics, expression profiling, metabolomics, epigenetic profiling and other functional data to define the biochemical and molecular pathways that may be amenable to therapeutic targeting provides a comprehensive approach to improve diagnosis, enhance understanding of phenotypes and define the molecular and metabolic pathways altered in the disease state. Defining molecular relationships among subsets of neurodevelopmental disorders toward developing common, targeted therapeutics is a key outcome of these efforts. For example, a hallmark feature of the genomic disorder Smith-Magenis syndrome (SMS) is a circadian rhythm defect, with significant sleep disturbance and obesity. Our work has shown that RAI1 directly regulates expression of BDNF, a key player in development and metabolism, and CLOCK, a master regulator of circadian rhythm, providing strong evidence for molecular and cellular etiology behind the sleep phenotype—these data from the base knowledge for therapeutic targeting in SMS. To further support these efforts, we designed and maintain the SMS Patient Registry to collect natural history data across the lifespan. Other patient registries are also in development to further our knowledge of rare conditions and to support ongoing research efforts to bring basic research closer to the patient.

Current projects also include: (1) investigating the role of NAD kinase in both Alzheimer’s disease and pancreatic cancer toward developing personalized approaches to treatment and prevention of disease. These studies use cell culture and conditional mouse models to improve our understanding of the underlying etiology of the associated neurodegenerative and neoplastic mechanisms; (2) developing an expanded newborn screening disorder panel to improve early screening for treatable genetic conditions, reducing health disparities associated with delayed diagnosis of these rare but treatable disorders; and (3) improving genomic variant curation and interpretation to facilitate earlier diagnosis for rare disease.

SELECTED PUBLICATIONS

RESEARCH INTERESTS

My research interests are directed toward translational medicine, specifically the application of molecular genetics to the diagnosis and treatment of genetic diseases. Recently, my efforts have been focused on laboratory and clinical aspects of genetic testing and clinical research in lysosomal storage diseases.

My main area of interest is the development, implementation, and evaluation of novel molecular approaches to the diagnosis of genetic disorders. As Senior Director of the Medical Genetics Laboratories and Medical Director of the Whole Genome Laboratory, our primary mission is to provide state-of-the-art genetic testing for common and rare conditions in a CAP and CLIA-certified clinical laboratory. To this end, we are very active in the development of new disease tests and testing strategies, refinement of testing methods for improved sensitivity and specificity, and extension of these activities beyond the usual scope of a molecular diagnostic lab. In collaboration with the Human Genome Sequencing Center at Baylor, we have recently developed, validated, and implemented whole exome sequencing as a clinical diagnostic test for individuals with apparent genetic disorders that have been a challenge to diagnose. The whole exome sequencing test is a highly complex test that identifies changes in a patient's DNA that are causative or related to their medical concerns. In contrast to current sequencing tests that analyze one gene or small groups of related genes at a time, the whole exome sequencing test analyzes the exons or coding regions of thousands of genes simultaneously using next-generation sequencing techniques. Identification of the underlying diagnosis can improve medical management and offer information to the family regarding prognosis. Another area of development in the area of personalized medicine is based on determining an individual's genomic profile. We recently developed and validated a highly multiplexed, beadchip assay that is designed to detect single nucleotide changes in disease genes and genetic loci that are causative or predictive of specific single gene disorders, increase the risk of developing certain common multifactorial conditions such as diabetes, or are associated with the altered metabolism and response to certain drugs. In addition to the development of tests for clinical application, we also have an active interest in determining molecular mechanisms for novel mutations detected through routine testing as well as identifying potential novel disease genes.

My major clinical research interest is in lysosomal storage diseases, particularly Fabry disease, Gaucher disease, and Mucopolysaccharidosis type 2, with emphasis on both clinical and laboratory approaches to the elucidation of the natural history, molecular genetics, and evaluation of treatments in clinical trials. Previous accomplishments in my laboratory include the further characterization of the natural history of the classical and cardiac variant forms of the disease, the study of genotype-phenotype correlations, and the development of rapid mutation assays for prenatal diagnosis and identification of carrier females. Currently, my efforts have been directed toward the evaluation in clinical trials of novel treatment approaches for Fabry disease, Gaucher disease, and other lysosomal storage disorders in the form of recombinant enzyme replacement therapy and chaperone therapy.

SELECTED PUBLICATIONS

RICHARD A. GIBBS, PH.D.
Wofford Cain Chair in Molecular and Human Genetics

Professor, Department of Molecular and Human Genetics
Faculty Member, Graduate Programs in Genetics & Genomics; Quantitative & Computational Biosciences; Integrative Molecular and Biomedical Sciences; and Translational Biology & Molecular Medicine
Director, Human Genome Sequencing Center, Baylor College of Medicine

Ph.D., University of Melbourne
Postdoc, Baylor College of Medicine

RESEARCH INTERESTS

Richard Gibbs is the Founder and Director of the Human Genome Sequencing Center (HGSC), established at BCM in 1996. The HGSC has a core mission of advancing medical care through research and translation of genomics. The group was one of the five worldwide sites to undertake and complete the Human Genome Project, culminating in the contribution of approximately ten percent of the sequence in 2003. The group subsequently collaborated to sequence many key species (Drosophila melanogaster, Brown Norway rat, rhesus macaque, bovine, Dictyostelium discoideum, sea urchin and honey bee genomes) and to generate the first comprehensive map of human genetic variation (the HapMap project). The HGSC now employs more than 180 staff, including eighteen faculty.

Since 2007, new technologies have allowed unprecedented advances in human genetics. The HGSC pioneered whole exome capture methods and published the first diploid sequence of a human, James Watson. Next, we demonstrated the utility of whole genome sequencing for genetic disease discovery and for guiding effective clinical treatments. In 2011, we began deploying these methods into routine clinical practice and now provide full gene sequencing to hundreds of individual patients each month. The HGSC is also part of the national program for systematic discovery of the cause of human single genome defects and has an active bioinformatics program, with research projects involving biologists and computer scientists. To advance the use of genomics in adult clinics the HGSC has developed methods for screening for cardiovascular genetic risk and has recently joined the national All of Us consortium. Problems under study focus on developing tools for generating, manipulating, and analyzing genome data.

SELECTED PUBLICATIONS

RESEARCH INTERESTS

Research in our lab spans the development of the inner ear from its earliest beginnings as a piece of embryonic ectoderm to the development of the highly patterned organ of Corti in the cochlea. We are also interested using our understanding of developmental processes to address why the sensory tissue of the cochlea fails to regenerate after damage and to identify genes involved in hereditary deafness.

We have an ongoing collaboration with Shinya Yamamoto’s lab at Baylor in which we are trying to use the fruit fly, *Drosophila*, to identify new mutations in genes that affect hearing. We are also working with Huda Zoghbi’s lab to identify targets of transcription factors that promote the differentiation of sensory hair cells. Finally, we also work on some aspects of craniofacial development, prompted by the discovery of the Foxi3 transcription factor, a Forkhead gene that plays crucial roles in the development of the inner ear and the branchial arch region and which causes canine ectodermal dysplasia in three breeds of hairless dogs.

SELECTED PUBLICATIONS

PHILIP JOHN HASTINGS, PH.D.
Professor, Department of Molecular and Human Genetics
Faculty Member, Graduate Program in Genetics & Genomics

Ph.D., University of Cambridge
Postdoc, Harvard University

RESEARCH INTERESTS

Part of my current work is on the genetic responses to stress in *Escherichia coli*. We have shown that gene amplification occurs in response to stress, and is, therefore, an adaptive process comparable to the well-known adaptive mutation response. We are using genetic and molecular techniques to elucidate the mechanism by which adaptive amplification occurs. Because this genetic instability would be part of an adaptive response, we expect to be able to induce it, and thus study the processes by which genetic instability occurs. This might provide a model system in which to study the induction of chromosomal instability in oncogenesis (about 80 percent of cancers show chromosomal instability), and in evolution.

We have discovered that amplification is initiated by a template-switch mechanism during replication. By comparing our data to those derived from yeast and human cancer and genomic disease, we have derived a model for the origin of chromosomal structural changes for all organisms. This then suggests a mechanism for the origin of copy number variation (the major genetic difference between individuals) and for genomic disease. The model involves modification of the mechanism of replication fork repair occurring in cells experiencing a programmed stress-response. We are testing predictions of this model both in *E. coli* and in human.

SELECTED PUBLICATIONS

JASON HEANEY, PH.D.

Associate Professor, Department of Molecular and Human Genetics
Research Member, Dan L Duncan Comprehensive Cancer Center and Center for Reproductive Medicine
Associate Member, Texas Medical Center Digestive Diseases Center
Academic Director, Genetically Engineered Rodent Models Core
Faculty Member, Graduate Programs in Genetics & Genomics and Development, Disease Models & Therapeutics
Ph.D., Pennsylvania State University
Postdoc, Case Western Reserve University

RESEARCH INTERESTS

In my laboratory we use mouse genetics, genomics, and genome editing technologies to catalog gene function and contribution to human disease. Ongoing research includes:

Characterizing genes and developmental pathways that contribute to testicular germ cell tumors (TGCTs). Germ cells first arise during embryogenesis as pluripotent-like cells. In the developing testis, somatic cells induce differentiation of these primordial germ cells to a unipotent spermatogonial stem cell fate. Using mouse models, we have shown that disruption of this sex-specific differentiation event causes the formation of TGCTs. Ongoing studies are using genome editing in mice, developmental biology approaches, and single-cell RNA sequencing to (1) characterize the mechanisms by which male germ cell sex-specific differentiation is disrupted, (2) test the contribution of a shift in pluripotent states (i.e. naïve to primed pluripotency) to germ cell transformation into tumor stem cells, and (3) functionize TGCT susceptibility loci identified in human genome-wide association studies.

Identifying the function of protein-coding genes in the mouse genome. The Knockout Mouse Phenotyping Program (KOMP2), as a part of the International Mouse Phenotyping Consortium (IMPC) has established an infrastructure for high-throughput generation of null alleles and broad-based, adult phenotyping of knockout mouse lines. KOMP2 has also implemented embryo phenotyping pipelines for null alleles that cause lethality in the homozygous (recessive) state. KOMP2 is currently piloting a pipeline that uses (1) bioinformatics to predict genes that are haplo-essential, i.e. cause lethality in the heterozygous (dominant) state, and (2) CRISPR/Cas9 genome editing in mouse embryos, time-lapsed imaging of cultured, pre-implantation stage embryos and imaging of post-implantation stage embryos, and high-throughput embryo genotyping to characterize developmental defects associated with heterozygous loss-of-function.

Developing and employing reporter mouse strains to evaluate new genome editing delivery systems. Delivery of genome editing systems such as CRISPR/Cas9 to somatic tissues has the potential to treat or cure some of the most severe human diseases. However, there are significant challenges, including identification of delivery systems for specific tissues and evaluation of overall efficacy and safety, that must be addressed. The Somatic Cell Genome Editing (SCGE) Program is a trans-NIH initiative addressing key barriers to the therapeutic use of somatic genome editing in humans. As part of this effort, The BCM-Rice Small Animal Testing Center is creating mouse models for in vivo reporting of somatic genome editing efficiency and using these reporter strains to evaluate novel genome editing delivery systems developed by member of the SCGE.

Characterizing gene and variant contribution to Mendelian diseases. Up to 70% of patients with suspected genetic disease remain undiagnosed likely because their disease-causing variant(s) has yet to be discovered or the clinical significance of identified variants remains unclear. Precision model organisms are important tools aiding in the interpretation of these variants of uncertain clinical significance and are critical for testing therapeutic paradigms. The Center for Precision Medicine Models leverages the expertise, infrastructures, and established collaborations between the Mendelian disease clinical and gene discovery programs; animal modeling programs; and database infrastructure programs within the Department of Molecular and Human Genetics. The Center supports local, national, and international programs and individual researchers in the development of precision models that will end the diagnostic odyssey of patients with undiagnosed, rare, and Mendelian diseases and serve as resources for pre-clinical studies investigating personalized medicine approaches to their care.

SELECTED PUBLICATIONS

CHRISTOPHE HERMAN, PH.D.

Professor, Departments of Molecular and Human Genetics and Molecular Virology and Microbiology
Faculty Member, Graduate Programs in Genetics & Genomics; Immunology & Microbiology; and Integrative Molecular and Biomedical Sciences

Ph.D., Université libre de Bruxelles
Postdoc, Massachusetts Institute of Technology
Postdoc, University of California, San Francisco

RESEARCH INTERESTS

Transcription errors and Epigenetic Inheritance

Phenotypic inheritance relies on the correct transfer of genetic (DNA) and epigenetic (heritable expression state) information. It is well established that DNA alteration can heritably change the phenotype of a cell, but what is less clear is what triggers heritable epigenetic change. Seminal work in bacteria has highlighted the importance of genetic networks in epigenetic inheritance. To generate stable phenotypic diversity in a population, cells with identical genomes can be differently programmed by transcription factors connected in a positive feedback loop, allowing the stable expression of two alternative phenotypes. Regulatory proteins associated with these molecular switches are often present in low numbers and therefore, subject to fluctuation or “molecular noise”. Therefore, the strategy used by a genetic network to control levels of its key regulators is fundamental to the understanding of the potential sources of dysregulation. Molecular noise in gene expression is universal and arises as a result of the stochastic nature of transcription and translation and can directly perturb the behavior of genetic-regulatory-networks generating phenotypic diversity.

My lab is investigating the role of transient errors in information transfer (transcription, translation, or post-translational modification errors) in the dysregulation of bistable genetic networks leading to heritable change. To study the contribution of information transfer errors to the generation of heritable phenotypic diversity, we are using classical bistable switches in the bacterium Escherichia coli; the bacteriophage lambda genetic switch; and the Lac operon.

With the exception of Prion inheritance, the idea that transient errors in information transfer from RNA to protein can have heritable consequences without any alteration of the DNA sequence has not been considered before, but our work challenge this idea by showing that transient alteration of autocatalytic systems can have profound heritable consequences. Thus, our work suggests that transient errors in information transfer may be an important mechanism of epigenetic change and should be considered as the causative agent for many human diseases ranging from the progression of AIDS to devastating neurodegenerative diseases.

SELECTED PUBLICATIONS

GREGORY IRA, PH.D.

Professor, Department of Molecular and Human Genetics
Faculty Member, Graduate Programs in Cancer & Cell Biology and Genetics & Genomics

Ph.D., Copernicus University
Postdoc, Brandeis University

RESEARCH INTERESTS

DNA recombination is ubiquitous and essential for DNA-based life. Recombination repairs DNA gaps and breaks that occur during replication or are induced in meiosis. Mutation in human genes involved in homologous recombination results in genome instability and diseases including a large fraction of inherited breast and ovarian cancers, Nijmegen breakage syndrome, ataxia telangiectasia, Bloom syndrome, Fanconi Anemia, Rothmund-Thomson syndrome, and others. Eukaryotes show a very high degree of conservation of mechanisms and protein components of recombination. This offers great potential for using model organisms to study DNA recombination processes. We use budding yeast, given the extensive genetic and molecular approaches available.

Our research goal is to understand the molecular mechanisms of homologous recombination and the role different proteins play during recombination. More specifically we are focusing on the function of DNA helicases and newly identified genetic screen proteins in DNA repair. The main experimental model is recombination induced by a single double-strand-break. This assay allows us to follow the kinetics of all steps in recombination at the level of DNA strand exchange and protein-DNA interaction. The results from our projects will constitute the foundation for studying DNA recombination in human cells and will provide insight into the molecular basis of genetic instability observed in cancer.

SELECTED PUBLICATIONS

HAMED JAFAR-NEJAD, M.D.

Professor, Department of Molecular and Human Genetics
Faculty Member, Graduate Programs in Genetics & Genomics and Development, Disease Models, & Therapeutics

M.D., Tehran University of Medical Sciences, Iran
Postdoc, University of Ottawa, Canada
Postdoc, Baylor College of Medicine

RESEARCH INTERESTS

Glycosylation is the most common post-translational modification of extracellular and secreted proteins and plays major roles in various aspects of cellular and organismal biology. We use Drosophila and mouse genetics, cell culture experiments and biochemical assays (in collaboration) to understand the role of glycosylation in animal development and pathophysiology of human disease. A major focus of our work is on glycosyltransferases that add O-glucose glycans to epidermal growth factor-like (EGF) repeats and their role in the regulation of the Notch signaling pathway. Another project focuses on a cytoplasmic enzyme called N-glycansase 1, mutations that have been identified in a multi-system developmental disorder called NGLY1 deficiency. We hope that our findings will shed light on the pathophysiology of the human diseases caused or modified by alterations in the function of these enzymes and will provide a framework to identify mechanism-based therapies for them.

Role of O-linked glycosylation in the regulation of Notch signaling. An evolutionarily conserved enzyme called POGlut1 (Rumi) adds O-linked glucose to EGF repeats harboring a CX\(\times\)P(A) C consensus motif. Several xylosyltransferases extend the O-glucose by adding one or two xylose residues to it. Notably, we have found that in some contexts, the Notch pathway is sensitive to the gene dosage of the enzymes responsible for the addition of the xylose-xylo-glycans to EGF repeats. Moreover, our recent reports on the identification of hypomorphic POGlut1 alleles in patients with a new form of limb-girdle muscular dystrophy (LGMD-2Z) indicate that myogenesis is highly sensitive to Notch glycosylation by POGlut1. Our current studies are aimed at elucidating the molecular bases for tissue-specific regulation of Notch signaling by xylose-xylo-glucose-O glycans. Another major goal is to understand how the corresponding glycosyltransferases regulate Notch signaling in a dosage-dependent manner. These studies might help us establish a framework for therapeutic modulation of the Notch pathway in diseases caused or exacerbated by aberrant Notch signaling.

A mouse model for Alagille Syndrome. Alagille syndrome (ALGS) is an autosomal dominant disorder characterized by a congenital cholangiopathy of variable severity accompanied by cardiac, skeletal, renal and other abnormalities. In 94% of cases, ALGS is caused by mutations in JAG1, which encodes one of the ligands for the Notch pathway. We have previously reported a mouse model for the ALGS and have identified Poglut1 as a dominant genetic suppressor of the ALGS biliary phenotypes. We have also identified the transcription factor Sox9 and another glycosyltransferase as novel dosage-sensitive modifiers of the Jag1\(+/-\) phenotypes in mice. Ongoing experiments are aimed at using this model and its genetic modifiers to better understand the pathophysiology of ALGS and to develop a therapy for this disease. This project has the potential to provide novel insight into the formation of the biliary tree, both during normal development and upon liver injury.

Using fly and mouse models to understand the pathophysiology of NGLY1 deficiency. Human patients with mutations in N-glycansase 1 exhibit a host of developmental abnormalities including a delay in physical and intellectual development, movement disorders, osteopenia and lack of tears. NGLY1 is a “deglycosylation” enzyme and is thought to remove N-linked glycans from misfolded proteins during ER-associated degradation (ERAD). Using flies, mice and mammalian cells, we have identified two major signaling pathways affected by the loss of NGLY1: BMP signaling and AMPK signaling. The goal of this project is to elucidate the mechanisms underlying the NGLY1 deficiency phenotypes and to identify potential therapeutic targets for this disease. This project is helping us redefine the roles of deglycosylation in ERAD.

SELECTED PUBLICATIONS

RESEARCH INTERESTS

Abnormal metabolism is an emerging hallmark of cancer progression and metastasis. Metabolic plasticity that occurs by rewiring cellular metabolic status allows cancer cells to dissociate from the primary tumor, overcome the nutrient and energy limitations in the microenvironment, and eventually survive to form metastasis in hostile environments. Although aerobic glycolysis (Warburg effect) is generally regarded as a dominant metabolic program in cancer, recent evidence suggests that mitochondrial oxidative phosphorylation (OXPHOS) significantly contributes to cancer progression and metastasis. Nevertheless, it is still unclear how these metabolic modes are regulated in cancer and the particular advantages each of these modes confers to metastasizing tumors. My lab seeks to understand the mechanism of mitochondrial energy reprogramming and mitochondria-nuclear crosstalk in cancer progression and metastasis of aggressive tumors. Most lab projects have a translational focus to evaluate our findings’ therapeutic potential using preclinical studies.

Mitochondria-nuclear crosstalk in cancer: Mitochondrial signaling can regulate several oncopathways. To understand the genetic and metabolic factors involved in the crosstalk between mitochondria and nucleus, my lab uses transmitochondrial cybrid (cybrid) models as a discovery tool. In cybrid models, we compare mitochondria from different cells under a commonly defined nuclear background. Thus, cybrids are an excellent tool to decipher the inter-organelle communication between mitochondria and the nucleus systematically. We utilize cybrid models coupled with multiple-OMICS approaches to identify genes and pathways regulated by mitochondria-nuclear communication. Discoveries from cybrids are then validated using cell lines, mouse models, patient-derived xenografts (PDXs) and clinical data.

Metabolic reprogramming and drug resistance: Compared to other breast cancer subtypes, triple-negative breast cancer (TNBC) is associated with a worse overall outcome owing to the lack of targeted therapies. We have published the pioneering report on the clinical significance of mitochondrial energy reprogramming to fatty acid β-oxidation (FAO) in metastatic TNBC as a prerequisite to attain aggressive metastatic potential. We have shown that FAO is critical for the Src family kinases (SFks) in TNBC. We are now evaluating how FAO-SFK crosstalk sustains a feed-forward loop that permits TNBC metastasis. Additionally, we also focus on the mechanisms of drug resistance to SFK inhibitors in TNBC.

Bioimaging and Multimodal Nanomaterials: In collaboration with material scientists, we have developed several nano-based compounds for bioimaging. We are currently focusing on materials that can be altered by cellular metabolic or biochemical modulations.
SEEMA R. LALANI, M.D.
Professor, Department of Molecular and Human Genetics

M.D., Aga Khan University
Resident, Pediatrics, Hershey Medical Center
Fellow, Medical Genetics, Baylor College of Medicine
Fellow, Clinical Cytogenetics, Baylor College of Medicine
Fellow, Clinical Molecular Genetics, Baylor College of Medicine

RESEARCH INTERESTS

My work has focused on understanding the molecular basis of neurodevelopmental and cardiovascular disorders in the pediatric population. We have used molecular cytogenetic diagnostic tools such as chromosomal microarray analysis (CMA) and exome sequencing (ES) in understanding the genetic basis of birth defects. We have also studied the clinical utility of rapid ES in neonatal intensive care units. I have been involved with the Undiagnosed Diseases Network (UDN) study at Baylor College of Medicine for several years and helped characterize diagnoses in multiple undiagnosed children with rare diseases. Using ES, we have identified several novel Mendelian disorders responsible for neurodevelopmental disorders in the pediatric population. In 2016, we first described a cohort of patients with TANGO2 disease and are currently recruiting families for the natural history study. We are also using an academic web-based virtual platform called Consultagene to combine virtual health delivery with genome sequencing in a medically underserved pediatric population with rare diseases, living along the Texas-Mexico border.

SELECTED PUBLICATIONS

SEEMAL@BCM.EDU
BRENDAN LEE, M.D., PH.D.

Robert and Janice McNair Endowed Chair in Molecular and Human Genetics

Professor and Chair, Department of Molecular and Human Genetics

Faculty Member, Graduate Programs in Genetics & Genomics; Development, Disease Models & Therapeutics

Director, Center for Skeletal Medicine and Biology

Associate Director, Medical Research Pathway, School of Medicine, Baylor College of Medicine

Director, Texas Children’s Hospital Skeletal Dysplasia Clinic

Co-Director, The Rolanette and Berdon Lawrence Bone Disease Program of Texas

RESEARCH INTERESTS

Developmental, translational and clinical studies of skeletal dysplasias and inborn errors of metabolism

As a pediatrician and geneticist, the overall mission of my research program is to translate the study of structural birth defects and inborn errors of metabolism into a basic understanding of development, disease and novel therapeutic approaches. In the area of metabolism, we have applied genetic approaches to the study of biochemical genetic disorders (specifically urea cycle disorders) as models of complex diseases (those involving nitric oxide dysregulation). This has led us to study the consequences of metabolic derangements broadly in the endocrine, cardiovascular, skeletal, renal and neurological systems. In the area of structural birth defects, we have studied paracrine and endocrine signaling pathways that regulate skeletal development including morphogens (TGFβ, Wnt and Notch), and extracellular matrix proteins and their modifications (e.g., collagen prolyl-hydroxylation) that contribute to the human skeletal dysplasias including brittle bone diseases and connective tissue diseases like Ehlers-Danlos syndrome. These developmental pathways have led us to ask how their dysregulation contributes to common diseases such as osteoporosis, osteoarthritis and bone cancer.

The mechanistic discoveries of my laboratory research program are translated into the clinical arena via clinical research that is performed as part of the Skeletal Dysplasia Clinic and the Metabolic Disorders Clinic at Texas Children’s Hospital, respectively, and as part of two NIH rare diseases clinical research consortia (the Brittle Bone Disorders Consortium and the Urea Cycle Disorders Consortium). My clinical research program began with stable isotopic measurements in humans and urea cycle disorder patients to better diagnose and assess new treatments. These human studies evolved into the assessment of nitric oxide flux in patients with UCDs and specifically in those with argininosuccinic aciduria. I have participated in and led both investigator-initiated and industry-sponsored interventional studies including the design and implementation of Phase II and III studies of a novel ammonia scavenger glyceryl-triphenylbutyrate in urea cycle patients; combinatorial phenylbutyrate/arginine treatment and nitric oxide supplementation in patients with argininosuccinic aciduria; and phenylbutyrate in maple syrup urine disease. In the area of skeletal dysplasias, I have studied the utility of zoledronic acid, teriparatide and anti-TGFβ1 and arginosuccinic aciduria; and phenylbutyrate in maple syrup urine disease. In the area of skeletal, renal and neurological systems, we have studied paracrine and endocrine signaling pathways that regulate skeletal development including morphogens (TGFβ, Wnt and Notch), and extracellular matrix proteins and their modifications (e.g., collagen prolyl-hydroxylation) that contribute to the human skeletal dysplasias including brittle bone diseases and connective tissue diseases like Ehlers-Danlos syndrome. These developmental pathways have led us to ask how their dysregulation contributes to common diseases such as osteoporosis, osteoarthritis and bone cancer.

The mechanistic discoveries of my laboratory research program are translated into the clinical arena via clinical research that is performed as part of the Skeletal Dysplasia Clinic and the Metabolic Disorders Clinic at Texas Children’s Hospital, respectively, and as part of two NIH rare diseases clinical research consortia (the Brittle Bone Disorders Consortium and the Urea Cycle Disorders Consortium). My clinical research program began with stable isotopic measurements in humans and urea cycle disorder patients to better diagnose and assess new treatments. These human studies evolved into the assessment of nitric oxide flux in patients with UCDs and specifically in those with argininosuccinic aciduria. I have participated in and led both investigator-initiated and industry-sponsored interventional studies including the design and implementation of Phase II and III studies of a novel ammonia scavenger glyceryl-triphenylbutyrate in urea cycle patients; combinatorial phenylbutyrate/arginine treatment and nitric oxide supplementation in patients with argininosuccinic aciduria; and phenylbutyrate in maple syrup urine disease. In the area of skeletal dysplasias, I have studied the utility of zoledronic acid, teriparatide and anti-TGFβ1 treatments in pediatric and adult osteogenesis imperfecta. Our preclinical gene therapy studies have led to a clinical trial of helper-dependent adenoviral gene therapy in osteoarthritids. Finally, I have focused on advancing the diagnosis of genetic diseases via gene discovery, multi-omic approaches to phenotyping and mechanistic studies in the NIH Undiagnosed Diseases Network.

SELECTED PUBLICATIONS

RICHARD A. LEWIS, M.D., M.S.

Professor, Departments of Molecular and Human Genetics, Ophthalmology, Pediatrics, and Medicine

Member, National School of Tropical Medicine and the Steering Committee of the Undiagnosed Disease Network Program at Baylor College of Medicine

M.D., University of Michigan Medical School

M.S., University of Michigan

Residency in Ophthalmology, University of Michigan Hospitals, Ann Arbor, Michigan

Fellowship, Montefiore Hospital, Einstein School of Medicine, Bronx, New York

Fellowship, Bascom Palmer Eye Institute, University of Miami, Miami, Florida

RESEARCH INTERESTS

Dr. Lewis, an ophthalmologist affiliated with the Cullen Eye Institute, joined the Department of Molecular and Human Genetics to provide in-depth consultations and research in genetic eye disorders and ocular manifestations of systemic hereditary disorders for Texas Children’s Hospital and the adult Genetics Services at the Baylor-affiliated hospitals. His clinical practice includes genetic eye disease and their constitutional associations. With numerous members of the Department, he and his colleagues pioneered the mapping and isolation of many X-linked ocular disorders, including X-linked Retinitis Pigmentosa, Choroideremia, the Oculo-Cerebro-Renal Syndrome of Lowe, Blue Cone Monochromacy, X-linked Nettleship-Falls Ocular Albinism, and the Nance-Horan X-linked Cataract-Dental Syndrome.

Dr. Lewis and Dr. David Nelson collaborated and isolated the gene for Incontinentia Pigmenti (IP2) at Xq28, an X-dominant disorder with multisystem complications in the eye, skin, brain, and teeth, and embryonic lethality in males. Studies with Dr. Igna Van den Veyver and Dr. Reid Sutton continue the search for the genetic construct for Aicardi Syndrome, another distinctive phenotype in females only with extreme retinal and optic nerve malformations and profound brain and developmental consequences.

For many years, he has collaborated with Dr. James Lupski on studies of Mendelian ocular disorders, including Stargardt Disease/Fundus Flavimaculatus (the most common genetic juvenile macular degeneration), the Laurence-Moon-Bardet-Biedl Syndromes (progressive retinal dystrophy with obesity, polydactyly, developmental disability, and various renal anomalies), the Usher Syndromes (retinitis pigmentosa and neurosensory deafness), and Leber Congenital Amaurosis (genetically heterogeneous disorders that share profound visual impairment from birth and other systemic features from neurosensory hearing impairment to progressive renal failure). The first human examples of digenic triallelic inheritance in man were defined from their extensive studies of his LMBBS cohort. The role of the Stargardt Disease gene in Age-Related Macular Degeneration and autosomal recessive forms of retinitis pigmentosa were explored here first as well.

Ongoing collaborations with Dr. Lupski and Dr. Jennifer Posey included the discovery of the gene for the “Hutterite-type” juvenile-onset cataract and the recognition that this gene may also cause subsequent sudden death of these individuals in their third and fourth decades of life; the study of an unusual autosomal dominant form of progressive retinal dystrophy uniquely associated with mitral valve prolapse and other cardiac malformations; the genetic evaluation of a multigenerational Texas family with autosomal dominant optic atrophy preceding nearly uncontrollable grand mal seizures first identified by Dr. Arthur Beaudet; the search for the underlying genetic mechanism(s) of the Hallermann-Streiff Syndrome, a rare ectodermal dysplasia with a distinctive face, beaked nose, natal teeth, thin hair, congenital and often spontaneously resolving cataracts, and proportionate short stature; and the investigations of the spectrum of Septo-Optic Dysplasia, optic nerve hypoplasia, and cerebral visual impairment, the Goldenhar Syndrome, and investigations of yet-unresolved forms of ectodermal dysplasia.

Dr. Lewis also serves on the Steering Committee of Baylor’s Undiagnosed Disease Network program. He has been a member of the Steering Committee of the National Eye Institute’s National Ophthalmic Disease Genotyping Network (eyeGENE) Program since its inception in 2003 and its Chair since 2009. He was the Principal Investigator for Baylor of the Studies of the Ocular Complications of AIDS (SOCA) for its entire 25-year history, the longest single NIH-funded research protocol in the history of the Department of Ophthalmology, and the sole Principal Investigator for the Age-Related Eye Disease Study 2 (AREDS2), that demonstrated that neither lutein nor fish oil (nor both) reduces the risk of progression of macular degeneration in older Americans and that supplemental micronutrients do not protect against cognitive decline.

SELECTED PUBLICATIONS

HONGJIE LI, PH.D.

Assistant Professor, Department of Molecular and Human Genetics and Huffington Center for Aging

Ph.D., University of Rochester, Rochester, New York
Postdoctoral fellow, Stanford University

RESEARCH INTERESTS

Technology development of multi-omics: We have developed the first single-cell RNA sequencing platform in Drosophila neurons and glia for studying neural development (Li et al., 2017 Cell; Li et al 2020 Current Biology). Recently, we developed a single-nucleus RNA-seq method in flies (McLaughlin, ..., Li, 2021 eLife) and applied it to the Fly Cell Atlas (FCA) project, a large collaborative project aiming to get the transcriptomic map of the entire fly. We will continue developing and applying multi-omics technologies (transcriptomics, epigenomics, and proteomics), and combine them with powerful fly genetic tools to study development, aging and diseases.

Anti-brain aging to increase healthy lifespan: Our long-term goal is to identify molecular and cellular mechanisms that contribute to brain aging, including glia-neuron interactions, systemic inflammatory signals, and gut-brain interactions. We will apply single-cell sequencing and cell surface proteomics (Li, Han, H. Li, 2020 Cell) to study glia-neuron interactions and inter-organ communications to understand brain aging. We will employ single-bacterium genomics to explore gut microbiota changes during aging and study how they contribute to brain aging.

Limiting age-triggered tumor initiation and growth: Age is the biggest risk factor for many types of cancers, including breast, prostate, lung and colorectal cancers (H. Li and Jasper, 2016). A central goal of this project is to discover how aging triggers tumor onset in the regenerating intestine. We will use fly intestine as a discovery model to generate hypotheses that we will then test in mouse cancer models and human colon cancers, aiming to develop effective strategies for limiting age-related tumor initiation and growth.

SELECTED PUBLICATIONS

OLIVIER LICHTARGE, M.D., PH.D.

The Cullen Foundation Endowed Chair

Professor, Departments of Molecular and Human Genetics, Biochemistry & Molecular Biology, and Pharmacology

Faculty Member, Graduate Programs in Genetics & Genomics; Quantitative and Computational Biosciences; Developmental Biology; and Integrative Molecular and Biomedical Sciences

Director, Computational and Integrative Biomedical Research Center (CIBR)

Ph.D., Stanford University
M.D., Stanford University
Residency, Internal Medicine, University of California, San Francisco
Fellowship, Endocrinology, University of California, San Francisco
Postdoc, University of California, San Francisco

RESEARCH INTERESTS

Our lab marries computation with experiments to understand the molecular evolution of genes and pathways—how their functions may become corrupted by genetic mistakes or how they may be re-engineered to new designs. Technically, we draw upon a wide range of disciplines to address fundamental questions in structural biology, clinical genomics and precision medicine. Over the long-term, we hope to discover new therapeutic paths and improve screening and early detection to preserve health and also to harness the synthetic potential of organisms for biotechnology. In the short-term we seek to interpret the mutational action of human genome variations and pinpoint the genes that drive complex diseases.

Starting from structural bioinformatics, our algorithms broadly merge mathematical and evolutionary principles. They enable multi-scale data integration and, in favorable conditions, precise control of molecular functions. This has led to discoveries across diverse systems, including G protein signaling, malaria, cancer, and neurological disorders. Newer interests include network theory, text-mining and cognitive computing. Specific examples include a network compression scheme that made tractable the diffusion of information across nearly 400 species. This approach uncovered a possible mechanism for the best drug against malaria. Other network studies, reasoned over the entire PubMed literature to discover new kinases and protein interactions for p53.

A recent promising line of research quantifies the evolutionary action (EA) of mutations on fitness to make a bridge between molecular biology and population genetics. EA correlates with experimental loss of function in proteins; with morbidity and mortality in people; and with purifying gene selection in populations. In head and neck cancer patients, EA stratifies outcomes and suggests alternate therapy for some patients. In autism, the mutational EA burden correlated with the depth of cognitive harm (IQ). In the future, we hope to unite these different approaches into a coherent path to compute precision therapy and personalized risk based on each patient’s unique profile of genome variations.

SELECTED PUBLICATIONS

PENGFEI LIU, PH.D., FACMGG

Assistant Professor, Department of Molecular and Human Genetics
Director, ACGME/ABMGG Laboratory Genetics and Genomics Fellowship Program
Associate Director of Clinical Research, Baylor Genetics
Ph.D., Baylor College of Medicine

RESEARCH INTERESTS

The ultimate research goals of the Liu lab are to (1) develop novel approaches to improve the implementation of genomic medicine, and to (2) utilize clinical diagnostic big data to generate knowledge that advances genomic science.

In the Undiagnosed Diseases Network (UDN) sequencing core, I have been leading the development and implementation of clinical whole genome sequencing (cWGS) for the diagnostics of Mendelian disorders. We have been working to establish a robust analytical pipeline with automation to perform reanalysis of cWGS data. To streamline interpretation of intronic variants revealed by cWGS, we have focused on neurological diseases, aiming to develop a fast, low-cost protocol that enables RNAseq profiling of patient-specific induced neurons trans-differentiated from clinically accessible tissues. Our group has also been investigating on various sequencing modalities beyond the currently widely used short-read based WGS technology for their potential in clinical diagnostics.

In another project, we seek to use the unique selection of patients with recurrent genomic deletions to elucidate the impact and mechanisms of genetic modifiers. We propose to integrate patient-based genomic analysis with cell-based genetic engineering and functional characterization to enhance the detection power of disease-risk alleles. Findings from this project are expected to bridge the gap between our understanding of highly penetrant, rare Mendelian variants and variants with higher population frequencies and association with complex diseases.

SELECTED PUBLICATIONS

To what extent are de novo DNA rearrangements in the human genome responsible for sporadic human disease traits? How many human Mendelian and complex traits, as well as sporadic genomic disorders, developmental disabilities and birth defects, are due to structural changes and/or gene copy number variants (CNV)? To what extent is secondary structure mutagenesis, rather than W-C base pair changes, underlying variant alleles and human disease traits? What are the molecular mechanisms for human genomic rearrangements and structural variant (SV) mutagenesis? The answers to these questions will impact both prenatal and postnatal molecular diagnostics, as well as patient and family management and therapeutics. Moreover, the answers have profound implications for organismal developmental biology, biological homeostasis, and human gene and human genome evolution.

My lab focuses on four major related areas of human genetics and genomics research: i) Mechanisms of Structural Variant (SV/CNV) mutagenesis, ii) the use of rare variant, family-based genomics to glean insights into gene variant alleles contributing to disease traits, iii) understanding disease biology as perturbations from homeostasis caused by mutation, and iv) molecular pathways to disease and therapeutics.

In 2011, the Clan Genomics Hypothesis was posited, and the complex allelic architecture of human disease was summarized formally. The implication of Clan Genomics was that recent mutation may have a greater influence on susceptibility to, or protection from, disease than is conferred by variations that arose in distant ancestors. This was conceptually illustrated by a ‘heat map’ in the color shades of the rainbow with the ‘hotter colors’ (red/orange) overlying the siblings in a nuclear family, yellow the parents, and the ‘cooler colors’, e.g., green, showing more distant ancestors in the clan. The rare variants (copy number variant, CNV; single nucleotide variant, SNV; indels) with large effects have arisen recently in the family/clan/population history. Therefore, new mutations in you and your recent ancestors, and novel combinations aggregated in your personal genome from your parents, account for many medically actionable variant loci.

Clan Genomics provided a framework for a rare variant parsing of genome-wide variant allele data from the assayable portion of individual personal genomes and examining for Mendelian expectations. The hypotheses being tested, rare variant alleles and Mendelian expectations, explores pathogenic variation that might contribute to disease trait manifestations in the family. During the last 10 years, the Clan Genomics hypothesis has been tested worldwide in hundreds of thousands of personal genomes – to date, no data have emerged that warrant rejection of the hypothesis.

JAMES R. LUPSKI, M.D., PH.D., D.SC. (HON)
The Cullen Foundation Endowed Chair in Molecular and Human Genetics
Professor, Departments of Molecular and Human Genetics and Pediatrics
Faculty Member, Graduate Programs in Genetics & Genomics; Integrative Molecular and Biomedical Sciences; and Translational Biology & Molecular Medicine
Ph.D., New York University
M.D., New York University School of Medicine
Postdoc, New York University
Resident, Pediatrics, Baylor College of Medicine
Fellow, Medical Genetics, Baylor College of Medicine
Sabbatical, Wellcome Trust Sanger Institute
D.Sc., Watson School of Biological Sciences, Cold Spring Harbor Laboratory (CSHL)

RESEARCH INTERESTS

To what extent are de novo DNA rearrangements in the human genome responsible for sporadic human disease traits? How many human Mendelian and complex traits, as well as sporadic genomic disorders, developmental disabilities and birth defects, are due to structural changes and/or gene copy number variants (CNV)? To what extent is secondary structure mutagenesis, rather than W-C base pair changes, underlying variant alleles and human disease traits? What are the molecular mechanisms for human genomic rearrangements and structural variant (SV) mutagenesis? The answers to these questions will impact both prenatal and postnatal molecular diagnostics, as well as patient and family management and therapeutics. Moreover, the answers have profound implications for organismal developmental biology, biological homeostasis, and human gene and human genome evolution.

My lab focuses on four major related areas of human genetics and genomics research: i) Mechanisms of Structural Variant (SV/CNV) mutagenesis, ii) the use of rare variant, family-based genomics to glean insights into gene variant alleles contributing to disease traits, iii) understanding disease biology as perturbations from homeostasis caused by mutation, and iv) molecular pathways to disease and therapeutics.

In 2011, the Clan Genomics Hypothesis was posited, and the complex allelic architecture of human disease was summarized formally. The implication of Clan Genomics was that recent mutation may have a greater influence on susceptibility to, or protection from, disease than is conferred by variations that arose in distant ancestors. This was conceptually illustrated by a ‘heat map’ in the color shades of the rainbow with the ‘hotter colors’ (red/orange) overlying the siblings in a nuclear family, yellow the parents, and the ‘cooler colors’, e.g., green, showing more distant ancestors in the clan. The rare variants (copy number variant, CNV; single nucleotide variant, SNV; indels) with large effects have arisen recently in the family/clan/population history. Therefore, new mutations in you and your recent ancestors, and novel combinations aggregated in your personal genome from your parents, account for many medically actionable variant loci.

Clan Genomics provided a framework for a rare variant parsing of genome-wide variant allele data from the assayable portion of individual personal genomes and examining for Mendelian expectations. The hypotheses being tested, rare variant alleles and Mendelian expectations, explores pathogenic variation that might contribute to disease trait manifestations in the family. During the last 10 years, the Clan Genomics hypothesis has been tested worldwide in hundreds of thousands of personal genomes – to date, no data have emerged that warrant rejection of the hypothesis.
RESEARCH INTERESTS

The primary goal of our research is to understand the molecular mechanisms of retinal development with the ultimate goal of improving our ability to prevent, diagnose, and treat human retinal disease. To this end, we are using the fruit fly Drosophila melanogaster as a model system to identify and determine the function of conserved genes required for normal retinal development. In spite of substantial differences between vertebrate and insect retinal morphology, genetic mechanisms of retinal development have been conserved for more than 500 million years. Thus, study of the molecular and genetic pathways controlling Drosophila eye development has provided a valuable set of tools with which to decipher the development and function of the vertebrate retina.

Our current research begins with the observation that the Epidermal Growth Factor Receptor (Egfr, a receptor tyrosine kinase) signaling pathway is both necessary and sufficient to trigger the differentiation of nearly all cell types in the Drosophila retina. This finding posed the question of how activation of a single pathway could trigger the differentiation of more than ten different cell types in the same tissue at the same time during development. Given the fundamental importance of Egfr signaling throughout higher eukaryotes in cancer, cell differentiation, proliferation, and survival, it is of broad significance to unravel this conundrum. To this end, we have generated extensive single cell RNA-sequencing data on multiple stages of the developing and adult Drosophila eye, as well single cell chromatin accessibility data (ATAC-seq), and whole eye disc ChIP-seq for Pointed, the nuclear effector of Egfr signaling. Integration and mining of these data has led to multiple hypotheses of how the Egfr pathway is reiteratively used to regulate retinal cell fate determination which we are currently testing. In addition, these data have revealed many other new insights into Drosophila eye development with unprecedented resolution and provide a fertile starting point for myriad studies.

SELECTED PUBLICATIONS

ALEKSANDAR MILOSAVLJEVIC, PH.D.

Professor, Department of Molecular and Human Genetics
Director, Graduate Program in Quantitative and Computational Biosciences
Faculty Member, Graduate Program in Genetics & Genomics
Co-Director, Computational and Integrative Biomedical Research Center (CIBR)

Ph.D., University of California, Santa Cruz

RESEARCH INTERESTS

The Bioinformatics Research Laboratory (BRL), directed by Dr. Milosavljevic, develops new data intensive methods and advanced computational approaches to advance understanding of biological systems and improve human health. The laboratory is engaged in collaborative projects with over a dozen current collaborators in the areas of genomics, epigenomics, extracellular RNA (exRNA) communication, and tumor biology. The laboratory serves as the data coordination and analysis center for consortia, including NIH Common Fund projects that are modeled after the Human Genome project and aim to transform biomedical research by creating maps and atlases of previously unexplored yet promising domains of biology.

As part of the NIH Roadmap Epigenomics Initiative, the laboratory constructed the Human Epigenome Atlas that maps cell-type specific epigenetic programs and identifies markers of cellular identity. This information is currently being applied to better understand the biology of human tumors, specifically the diversity of cell types within tumors and their interactions during cancer progression.

As part of the NIH Extracellular RNA Communication Consortium, the laboratory is half-way through a 10-year project to construct the exRNA Atlas that catalogs extracellular RNAs found in human body fluids that are involved in physiological or pathological intercellular communication of endocrine and paracrine type. One specific area of interest is paracrine signaling between epithelial, stromal and immune cells within tumors that are mediated by microRNAs and that may serve as “liquid biopsy” markers to guide cancer therapy.

The laboratory is involved in analysis of genome variation in human health and disease. As part of the Clinical Genome Resource project, the laboratory has developed the ClinGen Pathogenicity Calculator, Evidence Repository, Linked Data Hub, Allele Registry and other core components of the emerging ecosystem of data and computable knowledge to aid the interpretation of human genome variation in clinical contexts.

One particular challenge in interpreting genetic variation from whole genome sequencing is the understanding of the impact of genetic variation in regulatory loci. To address this question, we mapped the “epigenomic footprints” of genetic variation by constructing an extremely high-resolution map of sequence-dependent allelic imbalances in DNA methylation and other epigenomic marks. Surprisingly, the regulatory loci showed stochastic switching, which is defined as random transitions between fully methylated and unmethylated states of DNA between cells and even between the two chromosomes within the same cell. The methylation imbalances at thousands of loci are explainable by different relative frequencies of the methylated and unmethylated states for the two alleles at heterozygous loci. Further analyses provided a unifying model that links sequence-dependent allelic imbalances of the epigenome, stochastic switching at gene regulatory loci, and disease-associated genetic variation.

SELECTED PUBLICATIONS

SANDESH C. SREENATH NAGAMANI, M.B.B.S., M.D.

Professor and Vice Chair for Research Affairs - Clinical, Department of Molecular and Human Genetics

Director, Clinical Translational Core for the BCM Intellectual and Developmental Disabilities Research Center (IDDRC)

M.B.B.S., University of Mysore
M.D., Gandhi Medical College
Internship, Internal Medicine, Fairview Hospital
Residency, Clinical Genetics, Baylor College of Medicine
Residency, Internal Medicine, Baylor College of Medicine
Postdoc, Baylor College of Medicine

RESEARCH INTERESTS

My research is focused on translational medicine, specifically, evaluating new and potential therapies for various genetic disorders. The main focus of my research program is clinical investigation including the conduct of natural history studies, proof-of-concept pilot studies, and interventional clinical trials in patients with inborn errors of metabolism and skeletal dysplasias.

Inborn Errors of Metabolism: As the Co-Principal Investigator for the NIH Rare Diseases Clinical Research Network’s Urea Cycle Disorders Consortium, I am actively involved in conducting natural history studies, data-mining projects and exploratory studies aimed at improving therapies for UCDs. As the PI for the Pilot/Feasibility core of the consortium, I am involved in facilitating projects that will develop and validate new biomarkers for disease activity and endpoints that can be used in clinical investigation. As the PI for the Career Enhancement Core for the consortium, I am glad to be championing the career advancement of young investigators in the field of inborn errors of metabolism.

Skeletal dysplasia: I also serve as a lead investigator of the NIH Rare Diseases Clinical Research Network’s Brittle Bone Disorders Consortium. I have contributed significantly to the natural history studies of osteogenesis imperfecta. I have developed clinical endpoints and biomarkers to assess disease burden from the perspective of clinical trial readiness and endpoints that can be used in clinical investigation. As the PI for the Career Enhancement Core for the consortium, I am glad to be championing the career advancement of young investigators in the field of inborn errors of metabolism.

Clinical Interests: As an internist and adult clinical geneticist, I provide care to adults with a wide variety of heritable conditions. As the Director of the Clinic for Metabolic and Genetic disorders of bone, I evaluate and treat patients with osteogenesis imperfecta, heritable disorders of bone, IDD, Mendelian forms of cancer and heritable connective tissue disorders.

SELECTED PUBLICATIONS

DAISUKE NAKADA, PH.D.

Associate Professor, Department of Molecular and Human Genetics
Faculty Member, Graduate Programs in Cancer & Cell Biology; Development, Disease Models & Therapeutics; Developmental Biology; Translational Biology and Molecular Medicine; and Integrative Molecular & Biomedical Sciences
CPRIT Scholar in Cancer Research
Leukemia and Lymphoma Society Scholar

Ph.D., Nagoya University, Japan
Postdoc, University of Michigan

RESEARCH INTERESTS

Hematopoietic stem cells (HSCs) are immature progenitor cells that are responsible for replenishing blood cells that are lost during homeostasis and become activated upon inflammation or injury to promote regeneration. HSCs are multipotent and have the full developmental potential to differentiate into all blood cells types and persist throughout life through a cell division mechanism called self-renewal. Differentiation and self-renewal often go awry in blood cancer, or leukemia, to enable unlimited proliferation of malignant blood cells.

The focus of our lab is to study the molecular and cellular mechanisms that regulate self-renewal and differentiation in HSCs and leukemia. We use mouse genetics, genome-editing tools, and epigenome profiling to understand how physiological changes and stress conditions stimulate HSCs. We recently developed a lineage-tracing mouse model to trace the fate of HSCs and to study their behavior in vivo. This model is being used to investigate how HSCs respond to hematopoietic insults and the mechanisms by which they regenerate the blood system after stress. We also study how mechanisms that regulate HSCs go awry to cause leukemia. Our recent study indicates that leukemia cells rely on particular metabolic and epigenetic master regulators to support their unlimited proliferative capacity and to block differentiation. Our ongoing studies aim to identify and characterize novel metabolic processes that are essential for leukemia progression that can be targeted for intervention. By studying differentiation and self-renewal mechanisms in normal stem cells and cancer cells, we seek to identify key differences that could be targeted to promote regeneration by normal stem cells and suppress cancer by disabling the aberrant stem cell mechanisms.

SELECTED PUBLICATIONS

One of the most exciting findings in human genetics has been the recognition that unstable trinucleotide repeats contribute to more than four dozen genetic disorders, including myotonic muscular dystrophy, amyotrophic lateral sclerosis (Lou Gehrig disease) and Huntington’s disease. With collaborators, Nelson described the first of these unstable DNA sequences, a polymorphic CGG trinucleotide repeat in the FMR1 gene found to be enlarged in people with Fragile X syndrome, the most common form of inherited intellectual disability and autism. The mechanism by which this mutation leads to disease is through loss of function of FMR1 due to diminished expression accompanied by aberrant methylation of the gene. The FMR1 gene product is an RNA-binding protein that interacts with complexes of RNA and ribosomes. It regulates the translation of hundreds of mRNAs. The Nelson group focuses on dissecting the function(s) of FMR1 and its paralogs FXR1 and FXR2. Understanding factors that lead to DNA instability of this sequence is also a key interest.

The Nelson group also studies disorders found in people with smaller expansions of the FMR1 CGG repeat, known as premutation carriers (55-200 repeats). Males with CGG repeat lengths in this range are at risk for a late-onset neurodegenerative disorder termed FXS. FXS is distinct from Fragile X syndrome; individuals are cognitively unaffected until their 6th or 7th decade, but then show neuronal degeneration accompanied by neuronal nuclear inclusions that stain with ubiquitin on autopsy. The Nelson group has utilized models in flies and mice to investigate the hypothesis that a gain of function through RNA toxicity is responsible for neuronal dysfunction and death. Fly models allowed identification and characterization of modifiers, and mouse models showed definitively that the CGG repeat was both necessary and sufficient to affect mammalian neurons. The group is also studying Fragile X-associated primary ovarian insufficiency, (FXPOI) a disorder resulting in early menopause found in some female carriers of the premutation. Using mouse models, the group has improved its understanding of the mechanism of ovarian insufficiency. Identifying genetic modifiers in both FXS and FXPOI is a goal for potential therapies. The group has demonstrated roles for several RNA-binding proteins including TDP-43 and alterations in 5-hydroxymethylcytosine, suggesting widespread dysregulation of gene expression.

SELECTED PUBLICATIONS

RESEARCH INTERESTS

My laboratory is interested in developing gene therapies using helper-dependent adenoviral vectors (HDAd). HDAd (also called gutless or gutted adenovirus) do not contain any viral genes and thus represent a major improvement over early generation adenoviral vectors with respect to safety and efficacy. These vectors can transduce target cells with high efficiency to provide high level long-term transgene expression without chronic toxicity. Studies into improving the production of HDAd as well as their characterization are ongoing in my laboratory including manufacturing the vector under current Good Manufacturing Practices (cGMP) for clinical applications in humans.

A focus of my laboratory is liver-directed gene therapy using HDAd to treat a wide variety of genetic and acquired disease such as hemophilia, Crigler-Najjar syndrome, cardiovascular disease, alpha 1-antitrypsin deficiency and many others. We are investigating novel methods of delivering HDAd preferentially into the liver of mice, dogs and nonhuman primates. We have developed a minimally invasive, balloon occlusion catheter-based method to deliver HDAd preferentially into the liver of large animals which results in negligible toxicity and long-term, high level transgene expression. This technology may pave the way towards human clinical application for a wide variety of genetic and acquired diseases. We are also investigating ways of modifying the capsid of the vector to achieve preferential transduction of hepatocytes.

Another major focus of my laboratory is lung-directed gene therapy using HDAd with the primary goal of treating cystic fibrosis. We have developed a novel method of aerosolizing HDAd into the lungs of nonhuman primates which has resulted in very high efficiency gene transfer to the airway epithelium with negligible toxicity. These encouraging and compelling results may pave the way to treat patients with cystic fibrosis in the future.

We are also interested in investigating the innate and adaptive immune responses to HDAd. These important studies will provide information regarding the host-vector interactions which will be very useful for further improving the safety and efficacy of HDAd-mediated gene therapy.

Another active area of research in my lab is gene editing of human induced pluripotent stem cells (iPSCs) by HDAd. Gene editing of iPSCs has emerged as a powerful tool in research and has great potential in medicine. The major appeal of HDAd-mediated gene editing is that induction of an artificial double stranded break at the chromosomal target locus by a designer endonuclease is not required to achieve high targeting efficiency, thereby eliminating the potential for off-target cleavage. We are interested in understanding the mechanism of gene editing by HDAd so that we may further improve its efficiency to ultimately permit direct and efficient in vivo gene editing in the future.

SELECTED PUBLICATIONS

These studies will elucidate fundamental aspects of skeletal tissue regeneration and may lead to the goal of identifying molecules and mechanisms that regulate stem cells of different tissue origins. Important questions using a variety of genetic, immunologic, and microscopic technologies with expansion under severe stress and injury. However, their cellular origin and mechanisms that skeletal tissues such as muscle and tendon contain a discrete population of stem cells that appear postnatally and undergo clonal expansion under severe stress and injury. We recently identified that a subset of Cxcl12+ cells appear in the tibial and femoral diaphysis, coinciding with the development of the medullary cavity. Surprisingly, upon bone injury, these cells readily respond and proliferate within the internal fracture callus and suppress bone-forming cells with the recovery of the BM cavity. Bone marrow also provides a specialized microenvironment (niche) for HSC function. To understand how stress signals control endogenous HSCs and their niche interaction, we generated novel animal models to selectively label endogenous HSCs and SSCs and found a clear displacement of HSCs away from CXCL12-expressing niche cells upon interferon treatment. We are now elucidating the identity of unique stromal progenitor cells with anti-osteogenic function and their regulation mechanism for BM medullary cavity maintenance and normal bone repair. We are also studying the mechanisms by which niche cells regulate HSCs and understanding how perturbations to these interactions can promote disease states such as hematopoietic aging and malignancies.

My laboratory is also interested in the identity and function of stem cell populations in non-skeletal tissues such as muscle and tendon. Our recent studies demonstrated that the adult muscles and tendons contain a discrete population of stem cells that appear postnatally and undergo clonal expansion under severe stress and injury. However, their cellular origin and mechanisms that govern tendon and connective tissue regeneration and repair remain unknown. We work on these important questions using a variety of genetic, immunologic, and microscopic technologies with the goal of identifying molecules and mechanisms that regulate stem cells of different tissue origins. These studies will elucidate fundamental aspects of skeletal tissue regeneration and may lead to the development of new regenerative medicine strategies.

SELECTED PUBLICATIONS

JENNIFER POSEY M.D., PH.D.
Assistant Professor, Department of Molecular and Human Genetics
M.D., Baylor College of Medicine
Ph.D., Baylor College of Medicine
Intern and Resident, Internal Medicine, Columbia University Medical Center
Fellow, Medical Genetics, Baylor College of Medicine

RESEARCH INTERESTS

As a physician-scientist and a medical and human geneticist, my ultimate goal is to be able to translate our understanding of the relationship between an individual’s genotype and phenotype into actionable and treatable information in the clinic. The first step toward this goal is the elucidation of the complex relationships between genotypes and human disease phenotypes. My research program is focused on the following three scientific inquiries, each of which will lead to a more precise understanding of these relationships:

1. What is the genetic etiology of Postural Orthostatic Tachycardia Syndrome (POTS), and to what extent do genetic heterogeneity and more complex modes of inheritance play a role in the clinical expression of POTS?

 POTS represents one of many adolescent- or adult-onset conditions for which the molecular contribution – and genetic architecture – of disease is not well understood (Posey et al., 2016). Despite numerous examples of families with POTS following an autosomal dominant mode of inheritance, candidate disease genes have not been forthcoming, supporting the possibility that genetic heterogeneity, or perhaps more complex modes of inheritance, may play a role in the clinical expression of this condition. To address this possibility, we have built a cohort of individuals and families with POTS and other forms of autonomic dysfunction and are applying and analyzing genomic methods to identify the molecular etiologies of disease in these individuals.

2. How common are dual molecular diagnoses, and can we take advantage of structured phenotype data to predict which individuals with rare conditions are more likely to have two (or more) molecular diagnoses contributing to disease expression?

 Dual or multiple, molecular diagnoses break from the ‘one-gene-one-disease’ paradigm, resulting in two or more independently segregating Mendelian conditions within an individual. Despite being long-recognized to occur in ‘rare’ cases, the true frequency of multiple molecular diagnoses has only more recently been described with the emergence of genome-wide techniques, such as array comparative genomic hybridization (aCGH) and ES, enabling a comprehensive identification of rare variation. In collaboration with the BG diagnostic laboratory and the BHCMG, we demonstrated that multiple molecular diagnoses are identified in at least 4.9% of individuals for whom ES is diagnostic (Posey, Harel, et al., 2017). We are now expanding this cohort and utilizing structured phenotype data to develop methods to predict which individuals may have multiple molecular diagnoses.

3. What are the roles of nuclear and mitochondrial genome variation in the expression of atypical forms of diabetes?

 Diabetes has been broadly classified into type 1 diabetes (T1D) associated with autoimmune destruction of the pancreas, and type 2 diabetes (T2D) with adult-onset insulin resistance and/or impaired glucose tolerance. Despite these classifications, approximately 1-4% of individuals < 18 years with diabetes have a monogenic form that is clinically (phenotypically) distinct from T1D and T2D. As a member of the Rare and Atypical Diabetes NeTwork (RADIANT) consortium, we are applying genomic methods to identify the molecular etiology of rare, monogenic forms of diabetes.
LORRAINE POTOCKI, M.D., FACMG

Professor and Vice Chair for Undergraduate Medical Education, Department of Molecular and Human Genetics

Director, Genetics & Genomics Pathway, School of Medicine, Baylor College of Medicine

M.D., Boston University School of Medicine
Resident, Pathology, University of Massachusetts
Fellow, Fetal and Perinatal Pathology, Brown University
Fellow, Medical Genetics, Baylor College of Medicine

RESEARCH INTERESTS

As a clinical geneticist I strive to provide the most comprehensive and compassionate care to individuals with developmental and genetic disorders. As a medical educator I strive to engender curiosity in all learners and help foster an environment that is conducive to collaborative learning and discovery.

My clinical research interest stems from experience in the characterization of Potocki-Shaffer syndrome (PSS), Smith-Magenis syndrome (SMS; deletion 17p11.2), and Potocki-Lupski syndrome (PTLS; duplication 17p11.2).

PSS is a contiguous gene deletion syndrome due to an interstitial deletion within the short arm of chromosome 11 [del(11)(p11.2p12)]. Clinical findings of PSS include intellectual disability, multiple exostoses, biparietal foramina, and genital anomalies in males. The presence of multiple exostoses is associated with deletion of EXT2, the presence of biparietal foramina is associated with the deletion of ALX4, and haploinsufficiency of PHF21A is associated with intellectual disability and craniofacial anomalies. Individuals with duplication of this region have also been identified.

SMS is associated with a heterozygous deletion within 17p11.2 or point mutation of RA1 that maps within 17p11.2. While the phenotype is variable among patients with the same sized deletion, most patients have cognitive impairment, neurobehavioral abnormalities, and severe sleep disturbances including an inversion of the circadian rhythm of melatonin. Cardiovascular anomalies—observed in less than 50%—include septal defects, and in more severe cases, obstruction of the right ventricular outflow tract as seen in tetralogy of Fallot. While not thoroughly investigated, growth hormone deficiency may play a role in the short stature and obesity phenotype observed in SMS.

Duplication 17p11.2 represents the reciprocal recombination of the common SMS deletion. The clinical phenotype of persons with dup17p11.2 is distinct from that of SMS and consists of infantile hypotonia and failure to thrive, mildly dysmorphic facial features, cognitive impairment, and autism spectrum. Although sleep disturbances are less of a concern for individuals with PTLS, many have sleep disordered breathing. Cardiovascular anomalies are seen in approximately 50 percent of patients and include left ventricular outflow tract anomalies such as hypoplastic left heart and bicuspid aortic valve. Growth hormone deficiency is observed in a subset of our PTLS cohort.

Clinical comparisons of PTLS and SMS, in conjunction with molecular analyses, will provide insight as to dosage sensitivity and the roles of the genes within this region.
My research is focused on the genetics and genomics of nonhuman primates. These species are widely used as animal models of disease because they are so similar genetically and physiologically to humans. For studies of neurobiology and behavior, infectious diseases, metabolic disorders and other common health problems, nonhuman primates provide unique and valuable experimental models. As the analysis of genetic mechanisms has become central to so much of biomedical and basic biological research, the need for detailed information about the genomics of nonhuman primates becomes more important and useful.

My laboratory is working on various aspects of primate genomics, including both basic comparative analyses and targeted research using primate models of human disease. As a member of the Human Genome Sequencing Center, I plan and execute various studies of nonhuman primate genomes. Working with other HGSC faculty and staff, as well as people outside BCM, we have produced de novo whole genome assemblies for several primates, including baboons (Papio anubis), sooty mangabeys (Cercopithecus ascanius), marmosets (Callithrix jacchus), bushbabies (Aotus trivirgatus), mouse lemurs (Microcebus murinus), owl monkeys (Aotus nancymaae) and other species. These projects involve deep whole genome sequencing of one individual per species, and computational assembly of the sequence data to produce a reference genome sequence that will be a resource for all future genetic analyses of that species. These projects also include the sequencing of additional individuals to identify intra-species genetic variation and RNA sequencing to characterize gene expression. The result is high-quality genomic information that facilitates both disease-related research and analyses of genome evolution (Rogers and Gibbs, 2014; Warren et al. 2020; Thomas et al. 2018). We have also conducted an extensive survey of genomic variation in the most widely studied nonhuman primate, the rhesus macaque (Macaca mulatta). By sequencing the genomes or exomes of more than 2,000 rhesus macaques from various research colonies we have discovered hundreds of thousands of functionally significant genetic variants that can be used to examine the effects of specific genes on various disease-related phenotypes. Information regarding genetic variation, including changes in protein-coding sequences and putative regulatory sequences, in combination with other genomic data, makes all these primate species more useful for future biomedical research projects.

The second major line of research in my laboratory is the targeted analysis of particular nonhuman primate models of human genetic diseases. In collaboration with psychiatrists and neurobiologists, we have studied individual variation in behavior among macaques and baboons (Rogers, 2018; Fox et al. 2021) and explored the underlying neurobiological mechanisms. The multifaceted behavior of primates, including their capacity for complex social interactions, makes them outstanding subjects for behavioral and neurogenetic investigation (Oler et al., 2010; Rogers et al., 2013; Fawcett et al., 2014; Gunter et al., 2022). The primate models point us to genetic mechanisms that may influence susceptibility to psychiatric disorders in people (Rogers et al., 2013; Fox et al. 2021). We are also analyzing primate models of inherited susceptibility to cancer (Dray et al., 2018), retinal disorders and early onset progressive vision loss (Moshiri et al., 2019), endometriosis (Tapmeier et al. 2021) and others.

While most of our effort is focused on the projects above, I also maintain an active interest in genetic analyses of wild primate populations. I am leading a large international consortium of researchers who are investigating genetic differentiation among wild populations of six species of baboons (genus Papio). We found that these species, although genetically and phenotypically quite distinct, have an evolutionary history that includes multiple episodes of inter-species admixture and gene flow (Rogers et al., 2019). This makes the living baboons an excellent model for human genome evolution and our ancient admixture with Neanderthals and Denisovans. In other projects, we and our colleagues are studying wild kindi baboons (Papio kindae) in Zambia (Jolly et al., 2011) and are developing whole genome sequence data for hundreds of primate species from all across the globe.
SUSAN M. ROSENBERG, PH.D.

Ben F. Love Chair in Cancer Research

Professor, Departments of Molecular and Human Genetics, Biochemistry & Molecular Biology and Molecular Virology & Microbiology

Leader, Cancer Evolvability Program, Dan L. Duncan Comprehensive Cancer Center

Faculty Member, Graduate Program in Genetics & Genomics

Ph.D., University of Oregon

Postdoc, University of Paris VII

Postdoc, University of Utah School of Medicine

Postdoc, National Cancer Institute at Frederick

RESEARCH INTERESTS

Genome Instability in Evolution, Antibiotic Resistance, and Cancer

Stress-Induced Mutagenesis: For 70 years the world believed that mutations occur at random. The discovery of stress-induced mutagenesis has changed ideas about mutation and evolution and revealed mutagenic mechanisms that are induced by stress responses. The stress responses increase mutagenesis specifically when cells are maladapted to their environments, i.e. are stressed, potentially accelerating evolution then. We are elucidating molecular mechanisms of stress-inducible mutation in *E. coli* using genetic, molecular, genomic, functional systems biological, single-cell, and synthetic approaches. We discovered that the normally high-fidelity mechanism of DNA-break repair is switched to a mutagenic version of that mechanism, using a special error-prone DNA polymerase, specifically when cells are stressed, under the control of at least two cellular stress responses. Stress-inducible mutation mechanisms are providing important models for genome instability underlying some cancers and genetic diseases, resistance to chemotherapeutic and antibiotic drugs, pathogenicity of microbiomes, and many other important evolutionary processes. We are interested in molecular mechanisms that drive evolution.

Antibiotic-Resistance Mutation: Some mutations that confer antibiotic resistance form by mechanisms similar to stress-induced mutagenic DNA break repair, described above, induced by antibiotics themselves. We are examining the mechanisms by which these mutations form, and working to develop drugs to block evolution of antibiotic resistance.

Engineered Proteins Detect Spontaneous DNA-Damage Reaction Intermediates in Living Cells: We created *E. coli* cells that fluoresce red when their DNA is damaged, and use flow cytometry to quantify and recover red cells with spontaneous DNA damage to learn their origins. We also engineer synthetic “freeze-frame” proteins that “trap” DNA-damage reaction intermediates, which we use to discover the origins of spontaneous DNA damage in bacterial and human cells. We quantify fluorescent foci that represent specific DNA structures/intermediates, and map those specific DNA damage structures in genomes with ChIP-seq. Spontaneous DNA damage is the main culprit underlying genome instability in all cells. These tools are allowing us to discover its origins and a new functional class of cancer-driving genes conserved from bacteria to human.

Deep Translational Discovery of Cancer-Gene Functions Using *E. coli*: Genomic instability is a hallmark of cancer, yet the DNA-repair proteins that prevent and sometimes cause instability are highly conserved and similar in all organisms. *E. coli* RecQ DNA helicase has five human orthologs, *E. coli* RecQ works in homology-directed DNA repair opposite to how one human, a yeast, and a fly RecQ ortholog do, and thus exemplifies a second paradigm for the function of RecQ-family proteins in living cells. We also modeled p53- (most) cancers in *E. coli* by upregulating the *E. coli* ortholog of human RAD51, which most common cancers upregulate. We discovered that increased RecA causes DNA replication to stall, and that RecQ prevents this, allowing DNA replication. We used bioinformatics and human-cancer RNA data to discover that most common cancers co-upregulate two RecQ orthologs—BLM and RECQL4—with RAD51, and two proteins known to remove replication-fork stalls. Our data imply that, in most common cancers, surprisingly, four DNA-repair proteins that prevent cancer are upregulated and very probably promote cancer when overproduced by allowing DNA replication. We are pursuing other promising bacterial homologs of human cancer proteins to learn their mechanisms of action first in the simpler, more tractable bacterial system to provide mechanisms and models for the molecular bases of cancer, and reveal its Achilles’ heels.

SELECTED PUBLICATIONS

RESEARCH INTERESTS

Our primary research interest is to identify and understand the key molecular and neuroanatomical determinants of behavior using mouse and rat models of neurobehavioral and neuropsychiatric endophenotypes.

Behavior is governed by both genetic and environmental factors, yet the genetic basis for normal behavior remains poorly explored in spite of a need to better understand it for human health. Through the use of genetically engineered mouse and rat models combined with neurobehavioral measurements, in vivo neurophysiological recordings and high-throughput molecular and biochemical approaches, our lab studies the spatial and temporal requirement of genes either causative or implicated in the features associated with disorders of the brain. We aim to forge definitive links between genetic perturbations and alterations at the cellular, molecular and neural network levels that are responsible for behavioral impairments. Such work will provide the foundation for studies designed to improve behavioral phenotypes in mouse models of brain disorders by either genetic or pharmacological means, and will have clinical implications for human conditions characterized by impairments in these domains.

SELECTED PUBLICATIONS

FERNANDO SCAGLIA, M.D.

Professor, Department of Molecular and Human Genetics
Co-Director, Pediatric Mitochondrial Medicine Clinic, Texas Children’s Hospital
Clinical Director, Baylor College of Medicine and Chinese University of Hong Kong Joint Center for Medical Genetics in Hong Kong

M.D., University of La Plata School of Medicine
Intern, Pediatrics, Emory University School of Medicine
Resident, Pediatrics, Emory University School of Medicine
Fellow, Medical Genetics, Emory University School of Medicine

RESEARCH INTERESTS

My primary research interest is focused on the study of the natural history of mitochondrial disorders supported by NAMDC (North American Mitochondrial Disease Consortium), an NIH-funded registry that focuses on the longitudinal study of patients with mitochondrial disease. Furthermore, I am also involved in clinical trials in children and adults with mitochondrial disorders. One of my current areas of research includes the study of nitric oxide deficiency as the basis for stroke-like episodes in adults and children with a mitochondrial syndrome called MELAS.

As a PI on several grants that have been funded by national organizations in the United States, I have laid the groundwork for the study of nitric oxide deficiency in MELAS syndrome and its restoration with the use of arginine and citrulline supplementation. A current NIH grant funds a phase 1 study that aims to determine the maximum tolerated dose and safety profile of citrulline supplementation in adults with MELAS syndrome. Moreover, I am involved in an international clinical trial for pediatric patients evaluating the efficacy of vatiquinone in mitochondrial refractory epilepsy. In addition, I also conduct a trial to evaluate the effect of ASP0367, a selective modulator of PPARγ in adults with primary mitochondrial myopathy.

Furthermore, I am interested in determining whether there is a specific metabolomics profile for the different mitochondrial disorders caused by mitochondrial and nuclear gene defects and whether this profile could be used to monitor their natural history and the treatment efficacy when novel therapeutic approaches are trialed.

SELECTED PUBLICATIONS

FSCAGLIA@BCM.EDU
Our laboratory is dedicated to identifying and characterizing genes and genomic alterations that cause common, life-threatening birth defects and determining the molecular mechanisms by which they impact human health.

Congenital Diaphragmatic Hernia and Cardiovascular Malformations: Children with congenital diaphragmatic hernia (CDH) have an abnormal opening in the diaphragm that allows abdominal organs, like the liver and intestines, to enter the chest. This invasion interferes with normal lung development causing severe respiratory problems at birth. CDH affects about one in every 3,500 newborns. CDH-associated mortality and morbidity are high, particularly in the subset of individuals who have a co-existing cardiovascular malformation (CVM). We use clinical and molecular data from patients and machine learning to identify genes associated with CDH and/or CVM. Genes we have worked on include GATA4, SOX7, ZFPM2, FREM1, FREM2, FRAS1, NONO, NR2F2, FZD2, HCCS, HEY2, FBX1, SON, TRRAP, FGFR1, and FOXP1. We are now using mouse models developed in our laboratory to discover the morphogenetic and molecular mechanisms by which a subset of these genes function during diaphragm and heart development.

1p36 Deletion Syndrome: Deletions of chromosome 1p36 can cause a variety of birth defects including brain anomalies, eye/ vision problems, hearing loss, cardiovascular defects, cardiomyopathy and renal anomalies. Approximately one in 5,000 newborns carry either a terminal or interstitial deletion on chromosome 1p36. The RERE gene is located on chromosome 1p36 and encodes a nuclear receptor coregulator that plays an important role during embryonic development. Using a combination of animal models and data from individuals with mutations of RERE, we have shown that RERE plays a critical role in the development of the brain, eye, inner ear, heart and kidneys. We are actively working to determine the molecular mechanisms by which RERE deficiency causes defects in each of these organs. We are also searching for other genes that contribute to the medical problems seen in individuals with 1p36 deletions.

Esophageal Atresia/Tracheoesophageal Fistula (EA/TEF): Another life-threatening birth defect of interest is esophageal atresia/tracheoesophageal fistula (EA/TEF). During development, the esophagus (stomach tube) and the trachea (windpipe) develop from a common progenitor called the anterior foregut tube. In about one in 3,500 newborns, the development of these tubes is abnormal resulting in failure of the esophagus to reach the stomach (esophageal atresia) or an abnormal connection between the trachea and esophagus (tracheoesophageal fistula). Approximately 50% of EA/TEF cases occur in association with additional anomalies and 10% of cases have a constellation of findings known as VACTERL (Vertebral, Anal, Cardiac, TracheoEsophageal Fistula, Renal and Limb) association. We are using clinical and molecular data from research, clinical and public databases, in conjunction with machine learning, to identify new genes for EA/TEF and the other structural anomalies associated with VACTERL association.

Neurodevelopmental Phenotypes: We work with physicians and scientists from around the world to identify genes and genomic regions that are associated with neurodevelopmental phenotypes including developmental delay, intellectual disability and autism.

SELECTED PUBLICATIONS

GAD SHAULSKY, PH.D.

Professor and Vice Chair for Graduate Education, Department of Molecular and Human Genetics
Director, Graduate Program in Genetics & Genomics
Faculty Member, Graduate Programs in Genetics & Genomics and Immunology & Microbiology
Professor, Department of Education, Innovation and Technology

Ph.D., Weizmann Institute of Science
Postdoc, University of California, San Diego

RESEARCH INTERESTS

Allorecognition: Dictyostelium cells preferentially cooperate with relatives (Ostrowski, 2008), and we are investigating the mechanisms that underlie this kin discrimination. We found two cell-cell adhesion genes, tgrB1 and tgrC1, that are highly polymorphic in natural populations and required for allorecognition (Benabentos, 2009), and showed that the sequence polymorphism in these genes is sufficient to explain allorecognition in Dictyostelium (Hirose, 2011). This kin-recognition system protects cooperators against cheaters (Ho, 2013) and is temporally regulated, which allows it to evolve despite its essential role in development (Ho, 2015). We are investigating the mechanisms that regulate allorecognition under the hypothesis that TgrB1 and TgrC1 function as a ligand-receptor pair (Hirose, 2017), which is at the top of a signal transduction cascade that regulates development and allorecognition. The TgrB1-C1 system replaces cAMP as the central signaling system during tissue integration (Hirose, 2021), and we are investigating the downstream signal transduction mechanisms that were initially found using a genetic suppressor screen (Li, 2016).

The evolution of social behavior in Dictyostelium: Social organisms must deal with cheaters - individuals that reap the benefits of sociality without paying the costs. In Dictyostelium, some cells sacrifice themselves and benefit other cells that may be genetically different, providing a fertile ground for cheating. We have found over 100 genes that participate in social interactions (Santorelli, 2008) and used genetic tools to characterize mechanisms that determine social interactions and test how cooperators resist cheating (Khare and Shaulsky, 2006; Khare, 2009; Khare and Shaulsky, 2010). We are investigating the role of the TgrB1-C1 signaling system in cheating.

Functional Genomics: We have used transcriptomes to discover gene function in Dictyostelium (Booth, 2005; Van Driessche, 2007). We also showed that the transcriptome is a good phenotyping tool for discovering epistatic relationships (Van Driessche, 2005). Using RNA-seq, we compared the developmental transcriptomes of D. discoideum and D. purpureum, two species that diverged ~350MYA, but whose developmental morphologies are similar. We found vast similarities between the two transcriptomes (Parikh, 2010). We analyzed many mutants, and we developed a system for analysis of transcription factors with RNA-seq and ChIP-seq (Santhanam, 2015). We found complex regulation of transcriptional activity during development (Rosengarten, 2015) and described the long-non-coding transcriptome (Rosengarten, 2017). We are analyzing the major transcriptional transitions that characterize Dictyostelium development using RNA-seq profiles of 20 mutants (Katoh-Kurasawa, 2021). We are also developing new tools for exploration of the Dictyostelium genome, including a deep coverage genomic DNA library (Rosengarten, 2015), gene discovery by chemical mutagenesis at low level and whole-genome sequencing to identify mutations (Li, 2016), and an adaptation of GoldenBraid as a synthetic biology tool for Dictyostelium (Kundert, 2020).

Data Mining: We are collaborating with Dr. Zupan and his group at the University of Ljubljana, Slovenia to develop new concepts in genetic analysis. Previously we have developed a tool that performs automated epistasis analysis, GenePath (Demsar, 2001). We developed a gene function prediction system that relies on compressive data fusion and chaining and demonstrated its utility in predicting the function of bacterial-recognition genes in D. discoideum (Zitnik, 2015). We also developed dictyExpress, a web tool that can access and analyze our transcriptional profiling data (Stajdohar, 2017). Two of our recent collaborative projects include scOrange, a tool for analyzing single cell RNA-seq data (Strazar, 2019) and an image analysis platform that utilizes deep models in a visual programming environment (Godec, 2019).

SELECTED PUBLICATIONS

CHAD SHAW, PH.D.

Professor, Department of Molecular and Human Genetics
Adjunct Professor of Statistics, Rice University
Investigator, Jan and Dan Duncan Neurological Research Institute
Faculty Member, Stem Cells and Regenerative Medicine (STaR) Center and Graduate Program in Quantitative & Computational Biosciences

Ph.D., Mathematical Statistics, Rice University

RESEARCH INTERESTS

Chad Shaw is trained as a mathematical statistician, and he has worked in statistical genomics and bioinformatics for approximately 20 years. He is currently a Professor at BCM and Adjunct Professor of Statistics at Rice University. He is also the Senior Director of Innovation at Baylor Genetics Laboratory.

He has experience in next-generation sequencing, variant analysis, multi-omic data integration, gene expression profiling and variant functionalization. He also has expertise in copy-number analysis and has worked in the area of mechanistic studies of structural variation, with a focus on the role of repetitive elements in new mutations.

He led the development and analysis of an applied probabilistic model for the transmission of new mutations in the context of human genetic disease, which led to the elucidation of the dependency of recurrence risk on parent of origin, parental somatic mosaicism and paternal age. This fundamental contribution to human genetics was featured in many reviews and in the New York Times as a lay press article.

He has been an author on approximately 200 peer-reviewed publications, and his work has been cited approximately 17,000 times. He has trained 5 Ph.D. students in his own laboratory and over 10 students as a thesis committee member. He serves as chairman of the qualifying exam committee for the Quantitative and Computational Biosciences program. His students have performed methodologic research in high dimensional sparse regression, statistical methods for high throughput NGS screens approaches to modifiers of Mendelian disease, eQTL analyses and software tools for variant prioritization in rare disease diagnostics.

SELECTED PUBLICATIONS

JOSHUA M. SHULMAN, M.D., PH.D.

Professor, Departments of Molecular and Human Genetics, Neurology, and Neuroscience
Faculty Member, Graduate Programs in Genetics & Genomics and Neuroscience
Director, Center for Alzheimer’s and Neurodegenerative Diseases
Co-Director, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital

Ph.D., University of Cambridge
M.D., Harvard Medical School
Resident in Neurology, Brigham & Women’s Hospital, Massachusetts General Hospital
Movement/Memory Disorders Fellow, Brigham & Women’s Hospital, Massachusetts General Hospital

RESEARCH INTERESTS

Our research integrates genetic and genomic investigation in human subjects and model organisms, with the goal of understanding brain function and aging and improving the treatment of neurologic disease. We focus on Alzheimer’s disease and Parkinson’s disease, two incurable neurodegenerative disorders and experimental paradigms for the age-dependent failure of brain cognitive and motor control in humans.

Human Genetics: The clinical manifestation of neurodegenerative disease is the culmination of a multi-tiered pathogenic cascade that evolves over decades—understanding how genetic variants impact this causal chain is essential. We are therefore investigating the impact of genomic variation on directly measured Alzheimer’s and Parkinson’s disease pathology and related biomarkers, including quantitative measures of motor impairment based on assessments with biosensor devices. We are also deploying whole genome sequencing in the Alzheimer’s and Parkinson’s disease clinics and returning results to patients and families for precision medicine applications. Lastly, we are actively exploring links between inherited pediatric lysosomal disorders and oligogenic risk for late-onset, adult neurodegenerative diseases.

Drosophila Genetics: Despite the promise of current human genomic strategies, such as genome-wide association studies, next-generation sequencing, and gene expression profiling, they often fail to definitively identify disease causal genes and variants. Therefore, we are taking advantage of the rapid and powerful genetics available in the fruit fly, Drosophila melanogaster, in order to accelerate the validation of responsible genes and understanding of relevant mechanisms. The expression of human amyloid-beta, Tau, or alpha-synuclein proteins in the fly nervous system recapitulates many core features of Alzheimer’s disease and Parkinson’s disease pathogenesis. We are testing candidate human susceptibility genes for functional genetic interactions in these fly models of neurodegeneration. Implicated molecular pathways are probed in greater depth, using both Drosophila as well as mouse and human cellular models for translation. Current areas of interest include endolysosomal sorting, RNA metabolism/splicing, neuronal cell adhesion and synaptic mechanisms of neurodegeneration. In order to dissect the dynamic, aging-dependent gene expression changes in brains affected by Alzheimer’s and Parkinson’s disease, we are also generating and analyzing longitudinal, multi-scale omic datasets from fly and mouse models.

SELECTED PUBLICATIONS

PAWEL STANKIEWICZ, M.D., PH.D.

Professor, Department of Molecular and Human Genetics
Faculty Member, Graduate Program in Genetics & Genomics

M.D., Medical University of Warsaw, Poland
Ph.D., Institute of Mother and Child, Warsaw, Poland
Postdoc, Baylor College of Medicine
Dr. Habil (D.Sc), Institute of Mother and Child, Warsaw, Poland

RESEARCH INTERESTS

Genomic Disorders: The focus of our research is pathogenetics of lung development and, in particular, the role of non-coding regulatory elements. We demonstrated that haploinsufficiency of the transcriptional factor FOXF1 gene on 16q24.1 results in a lethal neonatal diffuse developmental lung disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Moreover, we unraveled the role of the TBX4 and FGF10 genes in other developmental lung diseases, including acinar dysplasia and congenital alveolar dysplasia.

We found that somatic mosaicism for CNVs that also contribute to germline mosaicism is significantly more common than previously thought. We showed that a considerable number of apparently de novo mutations causing genomic disorders occur in the previous generation as low-level somatic mosaicism and can thus be recurrently transmitted to future offspring. We continue to study the scale and clinical importance of this phenomenon.

Moreover, we investigate the molecular mechanisms and phenotypic consequences of genomic rearrangements. We reported the role of BPTF, PSMD12, and TRIP12 in neurodevelopmental disorders.

SELECTED PUBLICATIONS

V. REID SUTTON, M.D.

Professor and Vice Chair for Graduate Medical Education, Department of Molecular and Human Genetics
Director, Medical Genetics Residency & Fellowship Programs
Director, Inborn Errors of Metabolism Service, Texas Children’s Hospital
Medical Director, Biochemical Genetics Laboratory, Baylor Genetics

M.D., University of Kentucky
Resident, Pediatrics, Washington University in Saint Louis
Fellow, Medical Genetics & Clinical Biochemical Genetics, Baylor College of Medicine

RESEARCH INTERESTS

I have committed myself to advance scientific knowledge and patient care by applying my clinical skills to research questions. I have employed my knowledge and expertise in the diagnosis of genetic syndromes, dysmorphology, genetic mechanisms of disease, inborn errors of metabolism and skeletal dysplasias to answer clinical research questions. I have done this in independent studies of my own design as well as many instances of collaborative research with colleagues engaged in the laboratory investigation of Mendelian diseases.

I have made contributions through gene discovery and defining the phenotypic spectrum of a number of syndromes including Uniparental Disomy for Chromosome 14, Aicardi, Goltz, Ankyloblepharon-Ectodermal Dysplasia Clefting (AEC), Robinow and White-Sutton syndromes. I am the clinical geneticist for the Baylor Center for Genomic Research to Elucidate the Genetics of Rare Disorders (GREGoR) which is an NIH/NHGRI-funded study to discover the genetic basis of Mendelian disorders.

In my role as the Medical Director of the Biochemical Genetics Laboratory at Baylor Genetics, we have developed large-scale metabolomic profiling for the screening and diagnosis of inborn errors of metabolism and our laboratory is the first in the world to offer metabolomic profiling on a clinical basis, which has led to both advances in care and new discoveries.

I am the principal investigator for a multi-site longitudinal study of OI that is funded by the NIH (NCATS, NICHD, NIDCR, NIAMS & NIMH) as part of the Brittle Bone Disorders Consortium of the Rare Disease Clinical Research Network. I am also the clinical team liaison for this project.

SELECTED PUBLICATIONS

NICHOLAS TRAN, PH.D.
Assistant Professor, Department of Molecular and Human Genetics

Ph.D., Washington University in St Louis
Postdoc, Harvard University

RESEARCH INTERESTS

The brain is composed of a remarkably diverse set of neuronal cell types that each play a specific role in supporting brain function. When CNS tissues are damaged by injury or disease, this complex machine becomes dysfunctional, often with limited potential for recovery. A curious phenomenon is that in essentially all neurodegenerative conditions, certain cell types are more affected than others. My lab focuses on understanding what happens to different neuronal populations in neurodegenerative conditions using cutting-edge, single-cell genomic approaches. Our model of choice is the retina, the most accessible part of the brain, which we use both to study blinding disorders like glaucoma and to study basic mechanisms of degeneration. Our ultimate mission is to identify better targets for therapies that protect neurons from degeneration and stimulate axon regeneration.

SELECTED PUBLICATIONS

MENG WANG, PH.D.
Robert C. Fyfe Chair in the Huffington Center on Aging

Professor, Department of Molecular and Human Genetics and Huffington Center on Aging
Associate Director, Graduate Program in Genetics and Genomics
Faculty Member, Graduate Program in Development, Disease Models & Therapeutics

Ph.D., University of Rochester
Postdoc, Massachusetts General Hospital, Harvard Medical School

RESEARCH INTERESTS

Our research goals are to advance our knowledge on the fundamental mechanisms of somatic aging, lipid metabolism and reproductive senescence. These intertwined biological processes exert profound influence on human health, and are the major risk factors for various chronic and degenerative diseases. Our laboratory has been studying the molecular mechanisms governing these key biological processes and their complex interrelationship, by harnessing the power of functional genomics in Caenorhabditis elegans with metabolomics/lipodomics, chemical engineering and optical biophysics.

Our research has uncovered a lysosome-to-nucleus retrograde lipid messenger pathway, provided in-depth biochemical mechanisms for its action, and demonstrated its novel roles in regulating longevity. We have also discovered a previously unknown communication mode between bacteria and host mitochondria, deciphered bacteria-derived metabolites mediating this ancient dialogue and their signaling mechanisms, and determined their vital effects on host’s lipid metabolism and longevity. In addition, our work provides evidences that volatile metabolites signal through specific olfactory neuroendocrine nexus to shape reproductive and metabolic strategies. Technically, we have developed and applied hyperspectral and isotope-labeling-coupled stimulated Raman scattering (SRS) microscopy systems for investigating in vivo spatiotemporal dynamics of metabolite molecules and its previously unknown association with metabolic pathologies. Based on SRS microscopy, we have assembled high-throughput platforms for both forward and reverse genetic screens, leading to the discovery of new regulatory mechanisms of lipid metabolism.

Ongoing projects in my laboratory include: (1) investigating the systemic role of lipid signaling in the regulation of longevity; (2) studying the mechanistic link governing the signaling crosstalk between bacteria and host mitochondria; (3) characterizing the cellular and molecular mechanism regulating reproductive homeostasis during aging; (4) analyzing lipid dynamics using quantitative SRS label-free imaging.

SELECTED PUBLICATIONS
MICHAEL WANGLER, M.D.
Assistant Professor, Department of Molecular and Human Genetics
Faculty Member, Graduate Programs in Development, Disease Models & Therapeutics and Genetics & Genomics

M.D., Baylor College of Medicine
Internship, Baylor College of Medicine Affiliate Hospitals
Residency, Pediatrics, Baylor College of Medicine Affiliate Hospitals
Residency, Clinical Genetics, Medical Genetics, Baylor College of Medicine

RESEARCH INTERESTS
Molecular and Developmental Mechanisms of Mendelian Disorders

Our lab studies rare human disease phenotypes in order to gain insight into general principles of human health. Methods include clinical studies in rare disease, genomics and model organism genetics particularly Drosophila melanogaster. We are currently using Drosophila to study Mendelian disorders and their underlying genetic and developmental mechanisms in two major efforts:

1) Model Organisms and the Molecular Pathogenesis of Mendelian Disorders: We use Drosophila models for diagnostic paradigms. We are part of the Model Organisms Screening Center (MOSC) for the Undiagnosed Diseases Network (UDN). We have also started a similar effort in underserved populations called Community TEXOME.

2) Mendelian Disorders of the Peroxisome and Organelle Dynamics: Peroxisomes are fundamental sub-cellular organelles present in all eukaryotic cells. We use clinical and Drosophila studies in the elucidation of mechanisms of Peroxisomal Biogenesis Disorders-Zellweger Spectrum disorders (PBD-ZSD). These diseases are expanding from autosomal recessive disorders to a broad range of human diseases related to peroxisomes.

SELECTED PUBLICATIONS

PRIMARY RESEARCH FACULTY

THOMAS F. WESTBROOK, PH.D.

Robert A. Welch Chair in Chemistry

Professor, Departments of Molecular and Human Genetics and Biochemistry & Molecular Biology
Faculty Member, Graduate Programs in Cancer & Cell Biology and Genetics & Genomic
McNair Scholar

Ph.D., University of Rochester School of Medicine
Postdoc, Harvard Medical School

RESEARCH INTERESTS

Cancers are driven by genomic and epigenetic alterations that result in the activation of cellular proto-oncogenes and the inactivation of tumor suppressor genes. Although high-throughput genomic approaches have begun to establish extensive catalogs of gene alterations in human tumors, the genes that control tumor genesis, progression, and response to therapies are often concealed by the complex chromosomal instability in cancer cell genomes. This challenge is exacerbated by the lack of functional annotation for the vast majority of genes in the human genome. Thus, functional approaches are critical for identifying the genetic programs underlying cancer pathogenesis. Our laboratory applies genome-wide RNA interference (RNAi) and other technologies to the unbiased discovery of cancer genes and networks. Specifically, we focus on two areas of cancer gene discovery:

Discovering new oncogene-induced “stress pathways” and translating these pathways into cancer therapies: The cancer community has largely studied the effects of oncogenes and tumor suppressors and how they contribute to the “pro-tumorigenic” hallmarks of cancer cells. However, it’s also become clear that oncogenes themselves induce a variety of stresses in cancer cells such as metabolic reprogramming, oxidative pressures, mitotic instability, and proteomic imbalance. These stress phenotypes, sometimes collectively referred to as oncogenic stress, can serve to antagonize tumor growth and survival. The idea that oncogenes confer a highly stressed state onto cancer cells predicts that strategies to exacerbate one or more of these oncogene-induced stresses may tilt this balance in favor of killing cancer cells. We have been interested in exploiting the idea of oncogene-induced stresses for therapeutic discovery by tackling 3 poorly understood questions: (1) what are the molecular mechanisms by which prominent oncogenes (ex. Myc, Ras, etc.) induce these stresses? (2) how do cancer cells tolerate these stresses? and (3) are these stress support pathways different in normal and tumor cells? By using forward genetic approaches, we have made surprising discoveries about the endogenous cell pathways that are required to tolerate predominant oncogenic drivers like c-Myc (ex. Kessler et al., Science 2012). We are now extending these studies by elucidating the stress support pathways that enable cancer cells to tolerate other prominent drivers.

Identifying new oncogene / tumor suppressor networks via functional genetic screens: With the explosion of genomic data emerging from TCGA, COSMIC, and other annotations of cancer genomes, there are fundamental challenges in discerning which mutant genes are critical cancer drivers, (2) how are these drivers connected in genetic / signaling networks, and (3) how can these cancer gene networks be exploited for new therapies. We are addressing these important questions by developing genetic screens in human and mouse systems for new cancer gene networks. By combining new genetic technologies and engineered cell systems, we are uncovering new tumor suppressors (PTPN12, REST, INPP4B, etc.) and oncogenes (PLK1, TEX14, etc.) that control tumor initiation and progression (ex. Westbrook et al., Nature 2008; Sun et al., Cell 2011; Pavlova et al., eLife 2013). Through orthogonal studies, we have assembled these cancer genes into interconnected networks and uncovered new entrypoints for cancer therapies. For example, our group discovered a new tumor suppressor network that is disrupted in more than 70% of aggressive triple-negative breast cancers (TNBCs), with the tyrosine phosphatase PTPN12 acting as a core component of this network. Importantly, disruption of this tumor suppressor network leads to the concerted hyper-activation of a class of receptor tyrosine kinases. These kinases work together to drive TNBC and probably other cancers. Importantly, we have shown that pharmacologic inhibition of these collaborating kinases leads to tumor regression of primary TNBCs in vivo. We are currently dissecting the mechanism(s) by which these signaling pathways cooperate, and translating these discoveries into new clinical trials for TNBC patients at BCM.

SELECTED PUBLICATIONS

KIM C. WORLEY, PH.D.
Professor and Vice Chair for Research Affairs - Basic and Translational, Department of Molecular and Human Genetics
Faculty Member, Human Genome Sequencing Center
Chair Elect, BCM Faculty Senate

B.S., Massachusetts Institute of Technology
Ph.D., Baylor College of Medicine
Postdoc, Baylor College of Medicine

RESEARCH INTERESTS

My research interests center on building, annotating, understanding and making use of genomes. I have coordinated research in large multirinstitutional international research consortia, including analysis and publication of research results for the Human Genome Project, Human Microbiome Project, and comparative genomics projects for over 40 animal species. For these projects, I had a role in creating genome representations through de novo genome assembly, improving genome representation through targeted sequencing and structural variation analysis, and contributing to the understanding of genome function through analysis, annotation and computational methods. The number of sequenced human genomes has increased, and genomes representative of diverse humans have become available, but the challenge of interpreting the impact of personal variation and applying this knowledge in a way that serves individual patients and improves the practice of medicine remains an analytical frontier.

Ongoing research interests include:

All of Us: I lead data science training for researchers to leverage the data available in the All of Us Research Hub. This project is a part of the All of Us Evenings with Genetics Research Program, led by Drs. Debra Murray and Brendan Lee. The data provides opportunities for gene-disease association study replication using the extensive whole genome sequence data, with clinical records, environmental data and survey data. Trainees and faculty with computational experience can engage with the program as trainers and consultants. Early-stage investigators can apply to the mentoring program at https://www.bcm.edu/departments/molecular-and-human-genetics/mentorship.

ClinGen (https://www.clinicalgenome.org/): I coordinate the variant curation expert panel for X-linked inherited retinal diseases (https://www.clinicalgenome.org//affiliation/50086/). This project with Rui Chen, Dick Lewis and many other experts seeks to curate variants in seven X-linked genes that cause blinding eye diseases, several of which are targets for gene therapies. There are opportunities to learn and practice variant curation in support of this.

Alzheimer’s Disease Sequencing Project Consortium (ADSP): I lead the structural variant working group seeking to assess and interpret the impact of structural variants with Fritz Sledzецek, Richard Gibbs and Anita DeStefano. I also work with Olivier Lichtarge, Ismael Al-Ramahi, Juan Botas and Joanna Jankowsky on projects to assess the functional impact of variants in the ADSP data. Read more about the consortium here: https://www.nia.nih.gov/research/dn/alzheimers-disease-sequencing-project-consortia.

Undiagnosed Diseases Network / Undiagnosed Diseases Center: For this project, I lead the sequence analysis and variant interpretation group. We utilize both traditional exome and genome sequencing as well as newer assays (RNAseq, long read sequence data, Hi-C data) to identify causal genomic variants and diagnose undiagnosed patients. Find out more about the Baylor UDC at https://www.bcm.edu/research/researchcenters/undiagnosed-diseases-center.

Other strategic initiatives: I also work on strategic projects related to genomic data science at BCM including the Consultagene platform (https://consultagene.org/), researcher access to genomic data and new sequencing technology implementation.

SELECTED PUBLICATIONS

TAO WU, PH.D.

Assistant Professor, Department of Molecular and Human Genetics
CPRIT Scholar in Cancer Research
Ph.D., University of Chinese Academy of Sciences, (Institute of Biophysics)
Postdoctoral Associate, Yale Stem Cell Center, Yale School of Medicine

RESEARCH INTERESTS

The core question we want to answer is how the epigenetic factors dynamically regulate the cell fate decision and the response to external stimulation, specifically underlying cancer therapeutic resistance. Our final goal is to apply the fundamental knowledge for curing human diseases. Cancer is a systems biological disease. The tumor is a complex and robust biological system. Although we have developed powerful weapons such as chemotherapies, molecularly targeted therapies and immunotherapies to kill cancer cells, cancer treatment resistance is still a pressing challenge in current cancer research and treatment. Although acquired resistance can be developed by genetic mutations of tumor cells during treatment, it could also be due to many non-genetic factors such as activation of compensatory signaling pathways or stimuli-response epigenetic regulatory processes. Epigenetic regulatory processes in mammals, such as DNA methylations and histone modifications, are pivotal for controlling cellular functions. The profound alterations of DNA methylation (5mC) and histone modifications are common signatures in most types of cancer. Meanwhile, vast efforts were devoted to developing the drugs or small molecules by targeting epigenetic regulators, which can manipulate epigenomic modifications (such as HDACs for H3K27ac or DNMTs for DNA 5mC) in cancer cells to alter the activity of the responsive genes. However, the underlying molecular mechanisms of cancer epigenetics are still elusive.

In previous work, I discovered a novel DNA modification “N6-methyladenine” (6mA, DNA methylation that had never been identified in mammals before) with SMRT-ChIP (3rd-generation adapted single-molecule real-time sequencing with native ChIP samples) in mouse embryonic stem cells. We also identified ALKBH1 as the major demethylase of DNA 6mA. In 2018, we pinpointed that the 6mA’s elevation in glioblastoma stem cells and high-grade glioblastoma (GBM) patient samples. In contrast, the 6mA’s abundance is much lower in the non-stemlike GBM cells or low-grade GBM patient’s samples. Furthermore, the demethylase ALKBH1 appears to regulate hypoxia response genes which were well-known for driving the drug resistance in GBM. Based on these discoveries, we hypothesize that DNA 6mA might be a driver epigenetic mutation and its regulators could constitute an essential pathway that manipulates cancer therapeutic resistance. The DNA 6mA’s readers, writers or erasers, could be novel targets that could be targeted to bypass the resistance and boost the current therapies.

In our lab, we focus on the research projects to explore novel epigenetic regulatory processes and identify new epigenomic targets of the treatment-resistant cancerous cells with holistic approaches (genomics, genetics, biochemistry, systems biology and high-throughput screening). With the adapted single-molecule SMRT sequencing, single-cell sequencing and customized CRISPR/Cas9 screening approaches, we will explore new epigenetic players in cancer model systems.

SELECTED PUBLICATIONS

SHINYA YAMAMOTO, D.V.M., PH.D.

Assistant Professor, Department of Molecular and Human Genetics
Faculty Member, Graduate Programs in Development, Disease Models & Therapeutics; Genetics & Genomics; and Neuroscience

D.V.M., The University of Tokyo/Ministry of Agriculture, Forestry and Fisheries of Japan
Ph.D., Baylor College of Medicine
Postdoc, Baylor College of Medicine

RESEARCH INTERESTS

Many projects in the Yamamoto lab are related to rare and undiagnosed diseases. In fact, over 25 million individuals (about the population of Texas) are affected by rare or ultra-rare diseases in the U.S. alone (>300 million worldwide), and many experience a long and winding ‘diagnostic odyssey’ to try to find out the cause of their disorders. While state-of-the-art genomic technologies such as whole-exome sequencing (WES) and whole-genome sequencing (WGS) may provide answers to a subset of these individuals, many are often left with a handful of candidate genetic variants that require experimental studies to understand their functional consequences. As a co-director/leader and member of the Model Organisms Screening Center (MOSC) of the Undiagnosed Diseases Network (UDN) and Baylor College of Medicine (BCM) Center for Precision Medicine Models (CPMM), my lab utilizes Drosophila to test whether a genetic variant identified in a patient is the cause of their disease, which is pursued in close collaboration with clinicians and human geneticists across the country and abroad. I am also involved in the development of novel computational tools such as MARRVEL (http://marrvel.org) and ModelMatcher (https://www.modelmatcher.net) with bioinformaticians and programmers at BCM to facilitate rare disease diagnosis, research and collaborations.

Over the years, my interest has expanded to include more common neurological disorders such as autism spectrum disorders (ASD), Alzheimer’s disease, psychiatric diseases and drug addiction. More recently, we are also developing creative strategies to study infectious diseases such as Zika virus-mediated microcephaly and COVID-19, given their socioeconomic importance. In summary, while members of my lab and I work on diverse research topics, all projects are built on a common foundation that harnesses the ‘awesome power of fly genetics.’

SELECTED PUBLICATIONS

BING ZHANG, PH.D.

McNair Scholar

Professor, Department of Molecular and Human Genetics and Lester and Sue Smith Breast Center
Faculty Member, Graduate Program in Quantitative and Computational Biosciences and Graduate Program in Cancer and Cell Biology

Ph.D., Chinese Academy of Sciences, Shanghai, China
Postdoctoral fellow, University of Tennessee, Knoxville
Postdoctoral fellow, Oak Ridge National Laboratory, Oak Ridge, Tennessee

RESEARCH INTERESTS

My research interests encompass the broad areas of bioinformatics, computational proteomics, proteogenomics and cancer systems biology. During the past decade, through support from the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC), I have established an internationally recognized research program in computational cancer proteogenomics, focusing on integrating genomic and proteomic data to better understand cancer biology and to improve cancer diagnosis and treatment. My group led the first integrative proteogenomic characterization of human cancer in a colorectal cancer cohort, which was published in Nature in 2014. The proteogenomics approach has now been applied to more than 10 cancer types within and outside CPTAC. My group participated in fourteen proteogenomics studies published in Nature, Cell and Cancer Cell. Together, these studies have demonstrated that integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and that proteogenomics holds great potential to enable new advances in cancer biology, diagnosis, prognosis and targeted and immunotherapies.

To facilitate omics and multi-omics data analysis, my group has developed multiple widely used bioinformatics tools. CustomProDB is one of the first computational proteogenomics tools, and its expansion into NeoFlow enables proteogenomics-based neoantigen prioritization. The pathway and network analysis tool WebGestalt has been serving the biology research community for 17 years. In 2021 alone, WebGestalt was used >160,000 times by >56,000 users and was cited in >900 papers. The LinkedOmics web application makes multi-omics data from CPTAC and TCGA directly available and useful to the cancer research community. Published in 2018, the tool has already been used >150,000 times by >57,000 users, with >1000 citations.

Cancer proteogenomics is becoming a “data-rich” field. My team will continue developing bioinformatics methods and tools to expedite the extraction of novel biological and clinical insights from the continually growing volume of data. We are also working actively with clinical collaborators to translate data-driven computational discoveries into treatment advances for patients.

SELECTED PUBLICATIONS

LILEI ZHANG, M.D., PH.D.

Assistant Professor, Departments of Molecular and Human Genetics, Internal Medicine and Molecular Physiology and Biophysics

Faculty Member, Graduate Programs in Genetics & Genomics and Development, Disease Models & Therapeutics

M.D., Peking University Health Science Center, Beijing, China
Ph.D., Johns Hopkins University, Baltimore, Maryland
Postdoctoral Fellow, Johns Hopkins University, Baltimore, Maryland
Intern, University Hospitals Case Medical Center, Cleveland, Ohio
Resident, Internal Medicine, University Hospitals Case Medical Center, Cleveland, Ohio
Fellow, Medical Genetics, University Hospitals Case Medical Center, Cleveland, Ohio
Postdoctoral Fellow, Case Western Reserve University, Cleveland, Ohio

RESEARCH INTERESTS

The overarching theme of our laboratory is to understand the genomic and epigenomic regulation of the cardiovascular system in health and in disease with an emphasis on heart failure and cardiomyopathies.

One of our research focuses is circadian gene regulation in cardiac remodeling. Our work covers the entire circadian regulatory landscape, from the core clock, to the slave clock, to the effectors. We discovered that core clock factor REV-ERB is protective for cardiac pathological remodeling and pharmacological activation of REV-ERB prevents heart failure progression even in late-stages. This was the first example of treating heart failure by manipulating circadian machineries. We also established the very first cardiac slave clock, KLF15, which controls the circadian ischemia reperfusion injury in the heart. Recently, we discovered the first circadian IncRNA, Circa. Circa is uniquely expressed in the adult cardiomyocytes and protects the heart during pressure overload and myocardial infarction through global regulation of alternative splicing via interaction with hnRNP A1. Our goal is to gain knowledge on circadian gene regulation in the heart and ultimately hope to use this information to design novel therapeutics for heart failure.

Another focus of our laboratory is to study patient-derived induced pluripotent stem cell differentiated cardiomyocytes from patients with inherited cardiomyopathies. Using a comprehensive panel of phenotyping tools (biophysics, electrophysiology, energetics, and imaging) combined with genome editing tools, we aim to establish a platform to diagnose the molecular defects, characterize the pathogenic pathways and develop targeted therapy for inherited cardiomyopathies.

SELECTED PUBLICATIONS

HUI ZHENG, PH.D.
Huffington Foundation Endowed Chair in Aging

Professor, Departments of Molecular and Human Genetics and Neuroscience
Faculty Member, Graduate Programs in Development, Disease Models & Therapeutics and Genetics & Genomics
Director, Huffington Center on Aging

Ph.D., Baylor College of Medicine

RESEARCH INTERESTS

Alzheimer’s disease (AD) is the most common form of neurodegenerative disorder characterized by the deposition of beta-amyloid plaques and the accumulation of tau tangles. My laboratory has a long-standing interest in basic and translational research on Alzheimer’s disease. Our expertise is mouse genetics and we are known for using sophisticated mouse models and innovative approaches to probe the biology and pathophysiology of AD. Our earlier investigation provided critical insights into the physiological functions of the amyloid precursor protein and presenilins, mutations of which are linked to early-onset AD. Our recent effort has expanded from neurons to glial cells and from amyloid pathology to tau tangles. Our overarching hypotheses are AD is caused by faulty clearance of misfolded proteins and manifested by uncontrolled neuroinflammation. Accordingly, our major projects are focused on the investigation of the autophagy-lysosomal pathway and neuron-immune interaction with the goal to understand the disease mechanisms and to identify new therapeutic targets. Along these lines, we identified a highly selective and potent role of TFEB in the clearance of tau tangles and deciphered cell-autonomous and non-cell-autonomous mechanisms in this process. Additionally, we mapped out a complement C3 and C3aR signaling axis that governs network function and innate immunity in the context of aging, AD and tauopathy. Lastly, we revealed a novel epoxy lipid metabolic pathway that becomes dysregulated in AD and show that targeting this pathway by small molecule inhibitors lead to potent anti-inflammatory and neuroprotective effects, supporting the potential of these inhibitors as AD therapy.

WEBSITE: WWW.BCM.EDU/RESEARCH/LABS/HUI-ZHENG/

SELECTED PUBLICATIONS

ANTHONY WILLIAM ZOGHBI, M.D.
Assistant Professor, Departments of Psychiatry and Molecular and Human Genetics
Chief of Psychiatric Genetics in the Department of Psychiatry
Beth K. and Stuart C. Yudofsky Scholar

B.A., Washington University in St. Louis
M.D., Baylor College of Medicine
Adult Psychiatry Residency, Columbia University Irving Medical Center, New York State Psychiatric Institute
T32 Schizophrenia Research Fellowship, Columbia University Irving Medical Center, New York State Psychiatric Institute

RESEARCH INTERESTS
The primary goal of my lab is to understand the genomic basis of neuropsychiatric disease and translate those insights into improvements in clinical care, disease risk prediction and novel therapeutic development. Specifically, we use novel phenotyping strategies such as extreme phenotype sampling combined with whole genome sequencing and cutting-edge bioinformatics tools to improve the ability to identify genetic causes of disease. Our work is currently focused on studying rare genetic variation in severe forms of schizophrenia and obsessive-compulsive disorder, though we intend to apply similar strategies across neuropsychiatric disorders.

In addition to our interest in rare variation, we are also exploring the interplay between common polygenic risk and rare variants, structural variation, and pharmacogenetics in extreme phenotypes. Through this second area of interest, we aim to better understand the genomic architecture of psychiatric disorders and use genomic data in combination with environmental risk factors to predict those who will be at highest risk for developing a given disease.

The long-term goal of our research is to usher in the clinical implementation of genomics in psychiatry. We envision that this will involve a combination of genomic disease risk stratification for improved biomarker identification and targeted clinical trials, elucidating genetic predictors of treatment resistance and identifying novel genetic targets for therapeutic development.

SELECTED PUBLICATIONS

HUDA Y. ZOGHB, M.D.
Ralph D. Feigin M.D. Endowed Chair

Professor, Departments of Molecular and Human Genetics, Pediatrics - Neurology and Developmental Neuroscience
Faculty Member, Graduate Programs in Genetics & Genomics and Neuroscience
Director, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital
Investigator, Howard Hughes Medical Institute

M.D., American University of Beirut/Meharry Medical College
Postdoc, Baylor College of Medicine

RESEARCH INTERESTS

My laboratory’s research is rooted in my early clinical encounters with patients suffering rare and enigmatic disorders. One memorable patient suffered Rett Syndrome; another was part of a family that suffered a neurodegenerative disease that struck each successive generation at younger ages. Our investigations into the pathogenesis of these two diseases have influenced our understanding of basic neurobiology and more common disorders. Conversely, our foray into fundamental neurodevelopmental processes governed by Atonal homolog 1 has had unexpected ramifications for our understanding of (and potential therapies for) several diseases, from deafness and medulloblastoma to sudden infant death syndrome.

Polyglutamine Pathogenesis and Neurodegeneration. We co-discovered the gene for spinocerebellar ataxia type 1 (SCA1) in 1993 with Dr. Harry Orr at the University of Minnesota and have been collaborating to understand the disease mechanism. Our genetic studies in mice and, in collaboration with Juan Botas, in fruit flies led us to propose that the polyglutamine tract stabilizes Ataxin-1 increasing its levels and interactions and causing toxicity due to its enhanced function. Consistent with this we discovered that a 30-50% increase in wild-type Ataxin-1 causes cerebellar degeneration and ataxia in mice. We also discovered that the enhanced function of mutant Ataxin-1 with its native partner Capicua drives the cerebellar ataxia. Further, we discovered that reducing Ataxin-1 in the cerebellum is a viable therapeutic strategy, but that for other vulnerable brain regions the pathogenic mechanism is distinct. Interestingly, we learned that loss of Ataxin-1 and subsequently the repressor activity of the Ataxin-1-CIC complex leads to upregulation of Bace1 and increased risk of Alzheimer pathology in the forebrain. Our current studies are focused on understanding the mechanisms driving the regional vulnerability in SCA1. Inspired by our work on SCA1 and the importance of Ataxin-1 levels for brain health, we have pursued cross-species studies to identify modulators of APP, tau, and alpha-synuclein, proteins that drive degeneration in Alzheimer and Parkinson disease.

Atoh1 (aka Math1) and Neurodevelopment. We identified the mouse homolog of the *Drosophila* gene atonal, which controls the development of the fly’s chordotonal organs. We showed *Atoh1* null mice lack cerebellar granule neurons, pontine neurons, hair cells in the vestibular and auditory systems, D1 interneurons of the spinocerebellar tracts, Merkel cells, and intestinal secretory cells. *Atoh1* controls the genesis and/or differentiation of multiple components of the conscious and unconscious proprioceptive pathway and the neurons critical for interoception, chemosensitivity, and neonatal breathing. We are interested in understanding how this one gene guides the differentiation of diverse neurons from one progenitor population. To this end, we are pursuing single cell sequencing and detailed molecular studies during development.

Rett Syndrome. We discovered that Rett syndrome is caused by mutations in the X-linked methyl-CpG-binding protein 2 (MECP2). Our mouse model studies led to the definition of clinical phenotypes not previously appreciated in MeCP2 disorders and revealed that neurons are quite sensitive to having just slightly too much or too little MeCP2. In collaboration with Jiannrong Tang (BCM), we found that fornical deep brain stimulation restored hippocampal learning and plasticity. Using a MECP2 duplication mouse model, we found that normalizing MeCP2 levels using antisense oligonucleotides reverse the symptoms including late onset seizures in adult mature animals. More recently, we discovered that presymptomatic training of Rett mice improved their performance, delayed disease onset by months, and improved neuronal morphology and physiology. Our work is now focused on three main areas: the identification of a biomarker that serves as a proxy for MeCP2 levels, understanding of MeCP2 regulation, and the network dysfunction in Rett syndrome, with the ultimate goal of targeting regulators of MeCP2 levels as well as network modulation as potential therapies.

SELECTED PUBLICATIONS

- Rousseaux MWC, Tschumperlin T, Lu HC, (...), Zoghbi HY. Oxt HT# (2018). ATXN1-CIC Complex Is the Primary Driver of Cerebellar Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism. *Neuron*. 97: 1233-1243.e5. (*co-first authors; co-corresponding authors*)
CHENGHANG (CHUCK) ZONG, PH.D.

Assistant Professor, Department of Molecular and Human Genetics
Faculty Member, Graduate Programs in Cancer & Cell Biology and Genetics & Genomics
McNair Scholar

Ph.D., University of California, San Diego
Postdoc, University of Illinois at Urbana-Champaign
Postdoc, Harvard University

RESEARCH INTERESTS

The research of our laboratory focuses on the development of novel single-cell technologies and their applications in biology studies. With the rapid development of next-generation sequencing technology, high-throughput sequencing has become a powerful tool for biological research. In our lab, we are interested in examining the genome at single-cell resolution, in contrast to the genome averaged from an ensemble of cells. As a demonstration of the principle, we can detect somatic mutations existing in individual cancer cells. We are particularly interested in detecting early mutations that drive tumorigenesis and the early stage of tumor heterogeneity that will influence later tumor development. The lab specifically focuses on pancreatic cancer. Supported by NIH’s New Innovator’s award, we have successfully developed a linear amplification-based whole-genome amplification method (LCS-WGA), which allows us to profile not only the somatic mutations existing in single cells but also the spontaneous DNA damage in single cells for the first time, which we refer to as damagenome. The successful profiling of DNA damagenome promoted us to identify the high-damage genes existing in the human genome and unveil their association with complex human diseases. Furthermore, the even genome coverage of a single cell allows to construct the single-cell tumor evolution tree at unprecedented resolution.

In addition to profiling the genome at single-cell resolution, we are also interested in developing novel methods for single-cell transcriptional profiling. We have developed the first single-cell total-RNA-seq method (MATQ-seq). MATQ-seq has been applied to characterize the early lesions of pancreatic cancer using the mice model, the heterogeneity in tumor and its microenvironment, and various biological processes through collaborations.

Recently we have developed the droplet-based high throughput platform of MATQ-seq: MATQ-drop. MATQ-Drop can process both frozen and FFPE samples, which allows authentic profiling of tumor heterogeneity. Furthermore, we have successfully applied MATQ-Drop to profile the transcriptome of individual synapses (synaptosome). The high-throughput gene expression profiling of individual synapses opens a new avenue to study various neurological processes and diseases. Our goal is to unveil the transcriptome and epigenome changes in various biological processes such as tumorigenesis, aging and neurodegeneration.

SELECTED PUBLICATIONS

KJERSTI AAGAARD, M.D., PH.D.
Henry and Emma Meyer Chair in Obstetrics and Gynecology

Vice Chair of Research, Department of Obstetrics and Gynecology
Professor, Departments of Obstetrics and Gynecology and Molecular and Human Genetics; Graduate Programs in Development, Disease Models & Therapeutics and Genetics & Genomics

Ph.D., Mayo Graduate School of Medicine
M.D., University of Minnesota Medical School
M.Sc., University of Utah
Resident, Obstetrics and Gynecology, University of Minnesota
Fellow, Maternal-Fetal Medicine, University of Utah School of Medicine

RESEARCH INTERESTS

Dr. Aagaard’s highly collaborative laboratory and clinical research teams are dedicated to discovering the genomic, epigenomic, and metagenomic mechanisms underlying perinatal health and disease. Our interest and publications in this arena date back to 2004 and have evolved into clinical and translational research in murine, nonhuman primate, and human studies. There are currently three major focuses in our laboratory: (1) the effect of in utero exposures on the fetal epigenome, (2) understanding the genomic and epigenomic mechanisms involved in perinatal disorders and notably the developmental origins of adult metabolic disease, and (3) understanding the role of the microbiome in perinatal health with metagenomic interrogations. Since receipt of her first K12 in 2005 as a fellow, Dr. Aagaard has been continuously funded by NIH (NICHD, NIDDK, NIGMS and the Office of the Director), Burroughs Welcome Fund Preterm Birth Initiative, and most recently the Gates Foundation/USAIDS. Each of these employs integrative translational research with an emphasis on bioinformatics for imputation of complex metadata fields. Her research group aims to focus on mentoring translational research, notably with “big team science” and highly collaborative multi-site and center research.

CHRISTOPHER I. AMOS, PH.D.

Martha Ann and Harold M. Selzman, M.D. Endowed Chair in the Institute for Clinical and Translational Research

Professor, Departments of Medicine and Molecular and Human Genetics
Adjunct Professor, Dartmouth College & Nanjing University

Ph.D., Louisiana State University Medical Center, New Orleans
FACMG, Interinstitutional Medical Genetics Training Program, NIH

RESEARCH INTERESTS

This lab focuses on developing and applying methods for identifying genetic influences on complex diseases, particularly targeting cancer etiology and autoimmune diseases. A major project is an international study of lung cancer susceptibility and early detection. Major outputs from this study include the identification of variants in a CHRNA5 that influence smoking behavior and lung cancer risk and an uncommon nonsense variant of BRCA2 that greatly increases the risk for lung cancer and other smoking-related cancers but not breast cancer. We are using CRISPR/Cas9 techniques to study the impact of this variant in cellular models of lung cancer.

A second major project is collecting samples from patients with early-stage lung cancer and performing comprehensive profiling (RNA and DNA sequencing, copy number analysis and integrative pathway-based approaches) to identify predictors of relapse. We also study selected rare autoimmune diseases for which genetic and environmental factors interact to increase disease risk greatly. We also develop and apply novel strategies of machine learning that can identify interactions among multiple genetic and environmental causes of disease.

SELECTED PUBLICATIONS

CHRISTIE M. BALLANTYNE, M.D.

J. S. Abercrombie Chair - Atherosclerosis and Lipoprotein Research

Professor, Departments of Medicine, Molecular and Human Genetics and Molecular Physiology and Biophysics
Chief, Cardiology and Cardiovascular Research, Department of Medicine
Director, The Maria and Alando J. Ballantyne, M.D., Atherosclerosis Clinical Research Laboratory and Center for Cardiometabolic Disease Prevention

M.D., Baylor College of Medicine
Resident, Internal Medicine, The University of Texas Southwestern Medical School
Clinical Fellow, Cardiology, Baylor College of Medicine
American Heart Association/Bugher Foundation Fellowship, Howard Hughes Medical Institute and Institute for Molecular Genetics, Baylor College of Medicine

RESEARCH INTERESTS

Dr. Ballantyne’s research interests include the pathophysiology of atherosclerosis, focusing on monocyte activation and adhesion. Ballantyne and his colleagues use both murine and human studies to understand the mechanisms by which hyperlipidemia and obesity influence inflammation.

Ballantyne’s clinical research interests include preventive cardiology, lipids, metabolic syndrome, atherosclerosis, genetics and coronary artery disease. As director of the core laboratory for the ARIC study, Ballantyne examines the role of genetic variation combined with novel biomarkers to identify individuals at high risk for cardiovascular disease, metabolic syndrome and diabetes, using genomics and proteomics. His group also studies how genetic variation modifies the response to therapy with the goal of developing personalized diet, lifestyle and pharmacotherapy based on genetic profile and clinical phenotype.

ALISON A. BERTUCH, M.D., PH.D.

Associate Professor, Departments of Pediatrics-Hematology/Oncology and Molecular and Human Genetics; Graduate Programs in Cancer & Cell Biology and Genetics & Genomics

M.S., M.D., and Ph.D., Biology, University of Rochester
Internship and Residency, Pediatrics, Baylor College of Medicine
Clinical Fellow in Pediatric Hematology/Oncology and Postdoc, Baylor College of Medicine

RESEARCH INTERESTS

Dr. Alison Bertuch’s research is aimed at understanding the mechanisms of telomere structure and function and DNA double-strand break repair and their intersection. Her research uses yeast as a model system for the rapid identification and investigation of the genes that govern telomere homeostasis as well as human cell lines. In addition, Dr. Alison Bertuch’s laboratory studies the role of telomere and DNA repair dysfunction in the development of bone marrow failure in children. A long-term goal is to exploit the knowledge gained from these studies to aid in the treatment of not only bone marrow failure but also cancer.

SELECTED PUBLICATIONS

SELECTED PUBLICATIONS

MALCOLM BRENNER, M.D., PH.D.

Fayez Sarofim Chair

Professor, Departments of Medicine, Pediatrics, and Molecular and Human Genetics; Stem Cells and Regenerative Medicine (StaR) Center

Founding Director, Center for Cell & Gene Therapy

MBChB, University of Cambridge
Ph.D., University of Cambridge
FRCPath, FRCP

RESEARCH INTERESTS

Dr. Brenner’s primary research interest is the use of gene transfer to augment the immune response to human tumors, using vaccines and adoptive transfer of genetically modified T cells. In neuroblastoma, Dr. Brenner and co-investigators have shown that T cells expressing a chimeric antigen receptor (CAR) for a surface marker (CD2) on neuroblastoma cells can produce tumor responses in more than half the patients with refractory or relapsed disease. The Center for Cell & Gene Therapy is also studying the benefits of T cells, including those modified with CARs, that target other tumor antigens on hematological malignancies and solid tumors and initial clinical results are promising. Efforts are being made to further increase the effectiveness of these T cells by incorporating genes that enhance T cell growth and survival and that render the T cells resistant to the inhibitory effects of many human tumors. To enhance the safety of genetically modified T cells, Dr. Brenner and colleagues have clinically developed an inducible caspase system that will rapidly cause apoptosis of T cells within minutes of administration of a small molecule dimerizing drug, allowing adverse effects from the T cells to be reversed.

EDWARD C. COOPER, M.D., PH.D.

Associate Professor, Departments of Neurology, Neuroscience, and Molecular and Human Genetics; Postdoctoral Training Program in Brain Disorders and Development; Graduate Programs in Genomics & Neuroscience

M.D., Yale School of Medicine, Yale University, New Haven
Ph.D., Yale School of Medicine, Yale University, New Haven
Residency, Neurology, University of California, San Francisco
Postdoc and Adjunct Asst. Professor of Neurology and Physiology, University of California, San Francisco

RESEARCH INTERESTS

The Cooper Lab is focused on understanding and developing new treatments for forms of epilepsy affecting infants, children, and adults, mood disorder that often accompanies epilepsy, and related brain disease. These are complex developmental disorders that impact the whole person and the brain as a system. To gain leverage on such tough problems, we have taken clues from human and experimental genetics implicating a molecular pathway—the machinery of the action potential, the neuron’s rapid long-distance signal. Of central importance, both as genes often mutated in disease and therapeutic targets, are the voltage-gated potassium and sodium ion channels that generate and conduct the action potential’s electrical currents. However, channels do not function alone. Therefore, we also study the protein networks and signal paths that position, regulate, and respond to these channels.

SELECTED PUBLICATIONS

MARY E. DICKINSON, PH.D.
Kyle and Josephine Morrow Endowed Chair in Molecular Physiology and Biophysics

Dean of Research, Baylor College of Medicine
Professor, Departments of Molecular and Human Genetics and Molecular Physiology and Biophysics; Graduate Program in Genetics & Genomics

B.S., Vanderbilt University
Ph.D., Columbia University
Postdoc, California Institute of Technology

RESEARCH INTERESTS

My laboratory uses a multidisciplinary approach combining mouse genetics, developmental biology, imaging and bioengineering to understand mechanisms underlying angiogenesis and cardiovascular birth defects. Our work focuses on determining how mechanical forces influence the genetic programs that guide mammalian development.

SELECTED PUBLICATIONS

RICHARD H. FINNELL, PH.D.
William T. Butler, M.D., Endowed Chair for Distinguished Faculty

Professor, Departments of Molecular and Cellular Biology, Medicine, and Molecular and Human Genetics; Center for Precision Environmental Health; Graduate Programs in Genetics & Genomics and Development, Disease Models & Therapeutics

Ph.D., University of Oregon Medical School
Postdoctoral fellow, Anatomisches Institut, Universität Zürich, Switzerland

RESEARCH INTERESTS

Dr. Finnell is a pediatric geneticist who has been involved in investigating genetic susceptibility to environmentally induced birth defects, applying stem cell technology to the detection of potential teratogenic compounds in efforts to prevent these birth defects utilizing genome editing technologies to create novel model systems to better understand the pathogenesis of the defects, and applying highly innovative approaches to treating these disabilities. The laboratory focuses on micronutrient transport during embryogenesis and the interaction between gene variants and one carbon metabolism as it relates to the development of birth defects. His research involves global collaborative NGS studies of complex birth defects and using precision medicine approaches to managing high-risk pregnancies.

SELECTED PUBLICATIONS

SECONDARY RESEARCH FACULTY

MARGARET A. GOODELL, PH.D.

Vivian L. Smith Chair in Regenerative Medicine

Chair and Professor, Department of Molecular and Cellular Biology
Professor, Center for Cell and Gene Therapy and Departments of Pediatrics, Molecular and Human Genetics and Pathology & Immunology; Stem Cells and Regenerative Medicine (StaR) Center; Graduate Programs in Cancer & Cell Biology; Development, Disease Models & Therapeutics; and Genetics & Genomics

Ph.D., Cambridge University
Postdoc, Whitehead Institute, Massachusetts Institute of Technology
Postdoc, Harvard Medical School

RESEARCH INTERESTS

Murine and human hematopoietic stem cells; genetic and epigenetic regulation and development.

We are interested in the basic biology of hematopoietic stem cells and how their regulation goes awry leading to leukemia development. It has been known for decades that hematopoietic stem cells reside in the bone marrow in a quiescent state and replenish the supply of differentiated cells of the peripheral blood throughout the lifetime of an animal. No other adult cell type retains the capacity for such immense proliferation and differentiation. However, little is known about the cells or factors that regulate their primitive state or control their activation. We study the behavior of these stem cells in vivo and in vitro using mouse stem cells as a model, as well as pursue the mechanisms which control their behavior on a molecular level using genome-wide profiling strategies and mouse mutants. Many of the genes that control normal stem cell behavior appear to become dysregulated in leukemia and lymphoma.

SELECTED PUBLICATIONS

KENDAL D. HIRSCHI, PH.D.

Professor, Departments of Pediatrics and Molecular and Human Genetics; USDA/ARS Children’s Nutrition Research Center; Graduate Programs in Cancer & Cell Biology and Genetics & Genomics
Associate Director of Research, Vegetables and Fruit Improvement Center, Texas A&M University

Ph.D., University of Arizona
Postdoc, Whitehead Institute

RESEARCH INTERESTS

We study both model systems biology in plants as well as translational research related to agricultural improvement. At the molecular level, our goals are to understand the structure, biological function and regulation of plant genes that control stress responses. Many of our molecular approaches use the standard genetic “tool kit.”

Another major goal in our group is to learn how to manipulate the expression and function of genetic information to increase the nutritional content of crop plants, improve plant productivity and cleanse polluted soils. For this second objective, we collaborate with clinical researchers at the Children’s Nutrition Research here at Baylor and faculty at the Vegetable and Fruit Improvement Center at Texas A&M. Obtaining help from nutritional scientists, we perform clinical trials addressing how changes in plant architecture alter nutrient bioavailability.

SELECTED PUBLICATIONS

PHILIP J. LUPO, PH.D.

Professor, Departments of Pediatrics and Molecular and Human Genetics; Graduate Programs in Cancer & Cell Biology and Genetics & Genomics

Endowed Chair in Molecular Epidemiology, Texas Children's Cancer and Hematology Center

Director, Epidemiology and Population Sciences Program, Texas Children's Cancer and Hematology Center

Chair, Children's Oncology Group Epidemiology Committee

Ph.D., University of Arizona
Postdoc, Whitehead Institute

RESEARCH INTERESTS

I am a genetic epidemiologist and Director of the Epidemiology and Population Sciences Program in the Texas Children’s Cancer and Hematology Center. I have a particular interest in the use of novel epidemiologic study designs and methods to determine susceptibility factors for pediatric conditions – including childhood cancer and birth defects. This work is facilitated through my involvement in the Children’s Oncology Group (COG), where I am Chair of the Epidemiology Committee. Examples of my current research projects include: 1) the Reducing Ethnic Disparities in Acute Leukemia (REDIAL) Consortium, whose goal is to improve outcomes among Latino children diagnosed with acute leukemia; and 2) the Genetic Overlap Between Anomalies and Cancer in Kids (GOBACK) Study, a multistate collaboration evaluating the risk of cancer in children with birth defects. The ultimate goal of my research is to discover factors that can be used in new prevention efforts and targeted interventions to limit the adverse consequences of pediatric diseases.

PHILIP.LUPO@BCM.EDU

MARTIN M. MATZUK, M.D., PH.D.

Stuart A. Wallace Chair in Pathology

Professor, Departments of Pathology & Immunology, Molecular & Cellular Biology, Molecular and Human Genetics, and Pharmacology; Graduate Programs in Cancer & Cell Biology; Chemical, Physical & Structural Biology; and Genetics & Genomics

Director, Center for Drug Discovery

M.D., Ph.D., Washington University School of Medicine
Postdoc, Baylor College of Medicine

RESEARCH INTERESTS

Our laboratory is focused on 1) using functional genomics to investigate essential fertility pathways, reproductive tract cancers, and TGF-beta family signaling in mammals and 2) applying chemical biology approaches to develop lead compounds for contraception, cancer, and debilitating diseases. We have taken a discovery-based approach to first uncover genes expressed exclusively in the male or female germline and subsequently to define their roles in vivo using CRISPR/Cas9 technology and transgenic mouse models. In the process, we have identified novel genes involved in oocyte–somatic cell interactions during ovarian folliculogenesis, germ-cell intercellular bridge formation, acrosome formation, the piRNA pathway, etc. If a knockout results specifically in male infertility, this gene product may be a promising drug target for contraception in men, and our lab has begun to characterize small-molecule contraceptives to target male germ cells. We have successfully created unique mouse models to study ovarian cancer and to decipher the crosstalk of TGF-beta family, hormonal, and small RNA signaling pathways in normal and diseased reproductive tissues and their roles during pregnancy.

MARTIN.MATZUK@BCM.EDU
ANTHONY MUSTOE, PH.D.

Assistant Professor, Departments of Biochemistry and Molecular Biology and Molecular and Human Genetics; Therapeutic Innovation Center (THINC) CPRIT Scholar in Cancer Research

B.S., Washington University
Ph.D., University of Michigan
Postdoc, University of North Carolina

RESEARCH INTERESTS

The overarching goal of my laboratory is to define the mechanisms underpinning RNA folding and function. We seek to develop an improved, quantitative understanding of biology and human disease and to translate this knowledge into new therapeutic strategies. Our principal expertise is in developing and applying chemical probing techniques to define RNA structure and dynamics in living cells. We have used our technologies to discover novel functional structures in both non-coding RNAs and messenger RNAs (mRNAs), and to reveal transcriptome-wide roles for mRNA structure in tuning translation efficiency. We are presently applying our techniques to develop a quantitative understanding of how RNA structures modulate recognition and regulation by RNA binding proteins and microRNAs, and how RNA misfolding can lead to disease, particularly cancer. We additionally have multiple collaborations with other groups investigating the structure and function of diverse biomedically important RNAs.

SELECTED PUBLICATIONS

ANTHONY.MUSTOE@BCM.EDU

JEFFREY L. NOEBELS, M.D., PH.D.

The Cullen Trust for Health Care Endowed Chair in Neurogenetics

Professor, Departments of Neurology, Neuroscience, and Molecular and Human Genetics; Graduate Programs in Neuroscience and Development, Disease Models & Therapeutics
Director, Blue Bird Circle Developmental Neurogenetics Laboratory

Ph.D., Stanford University
M.D., Yale University
Postdoc, Harvard Medical School

RESEARCH INTERESTS

The principal research strategy in the Developmental Neurogenetics Laboratory is to apply mutational analysis to learn how genes regulate neuronal excitability and network synchronization within the developing central nervous system. We have linked over 40 genes with various patterns of epilepsy, and discovered hyperexcitability and synchronization defects in Alzheimer’s Disease, leading to a paradigm change in understanding the basis for accelerated cognitive decline. Other current projects center on genes for absence seizures, the most common childhood epilepsy; linking epilepsy with lethal cardiac arrhythmias; and network hyperexcitability in the peritumoral cortical microenvironment of glioblastoma. We trace the biology of the mutant circuitry in mice using molecular anatomical, patch clamp, optogenetic and 2 photon imaging. These experimental studies form the basis for development of preclinical strategies to selectively correct the expression of neuronal gene errors early in development. In collaboration with the Baylor Human Genome Sequencing Center, we performed a large-scale translational genomic research study of ion channel genes in epilepsy (The Human Channelopathy Project). We also lead a multisite NIH Center without Walls focusing on risk prediction of variants in ion channel genes linked to neurocardiac phenotypes.

SELECTED PUBLICATIONS

JNOEBELS@BCM.EDU
DONALD W. (WILL) PARSONS, M.D., PH.D.

Associate Professor, Departments of Pediatrics - Hematology-Oncology and Molecular and Human Genetics; Pathology & Immunology; Human Genome Sequencing Center; Graduate Program in Genetics & Genomics

Ph.D., Department of Pathology, Ohio State University College of Medicine
M.D., Ohio State University College of Medicine
Resident, Pediatrics, Johns Hopkins University
Clinical Fellow, Pediatric Hematology-Oncology, Johns Hopkins University & National Cancer Institute
Clinical Fellow, Neuro-Oncology, Johns Hopkins University

RESEARCH INTERESTS

Dr. Parsons’ research program focuses on the clinical application of genomic technologies in pediatric cancer care. His work has been instrumental in the characterization of the genetic landscapes of a variety of pediatric and adult cancers, including the first identification of IDH1 and IDH2 as cancer genes. His group is currently engaged in a number of projects seeking to genomically characterize pediatric cancers in order to identify potential molecular targets for therapy and facilitate the pre-clinical testing of novel therapeutics. Dr. Parsons was one of the principal investigators of the BASIC3 study, an NHGRI and NCI-funded U01 Clinical Sequencing Exploratory Research (CSER) program project involving clinical exome sequencing of tumor and blood specimens from children with newly diagnosed solid tumors, and is now helping to lead the KidsCanSeq study (which includes multimodal clinical genomic analysis of patients from multiple Texas institutions) as part of that same consortium. He is also the Children’s Oncology Group (COG) study chair for the NCI-COG Pediatric MATCH trial, the first nationwide precision oncology clinical trial for children with relapsed and refractory cancers.

SELECTED PUBLICATIONS

SESHARON E. PLON, M.D., PH.D.

Dan L Duncan Professor, Departments of Pediatrics and Molecular and Human Genetics and Human Genome Sequencing Center; Graduate Programs in Cancer & Cell Biology and Genetics & Genomics
Assistant Dean of Dual Degree Programs and Pathways, School of Medicine
Director, Cancer Genetics Clinical and Research Programs, Texas Children’s Hospital

M.D., Ph.D., Harvard University
Resident, Internal Medicine, University of Washington
Postdoc, National Cancer Institute, National Institutes of Health
Fellow, Medical Genetics, Fred Hutchinson Cancer Research Center, Univ. of Washington

RESEARCH INTERESTS

I have had a longstanding focus on the fields of cancer genetics and clinical genomics. My translational research is designed to understand mechanisms of susceptibility to pediatric cancer through large collaborative projects. We have worked closely with Dr. Philip Lupo on a landmark study of the association between birth defects and childhood cancer and are now using whole genome sequencing of these unique patients to identify novel cancer susceptibility genes as well as the hereditary basis of rhabdomyosarcoma, an often-lethal tumor in children. I serve as co-PI with Dr. Donald (Will) Parsons and Dr. Amy McGuire on the NHGRI/NCI-U01 Texas KidsCanSeq trial that studies the incorporation of CLIA clinical genome-scale exome sequencing into the care of childhood cancer patients (solid tumors and brain tumors) in the diverse patient populations across six sites in Texas. I am one of the principal investigators of the Clinical Genome Resource (ClinGen), an international effort to develop databases and websites to improve the clinical interpretation of genetic variation.

SELECTED PUBLICATIONS

NOAH F. SHROYER, PH.D.

Associate Professor, Departments of Medicine-Gastroenterology and Hepatology and Molecular and Human Genetics; Graduate Programs in Cancer & Cell Biology and Development, Disease Models & Therapeutics

Adjunct Associate Professor, Department of Pediatrics-Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital

Ph.D., Cell and Molecular Biology, Baylor College of Medicine

Postdoc, Molecular and Human Genetics, Baylor College of Medicine

RESEARCH INTERESTS

My laboratory is focused on understanding the mechanisms that control intestinal development and homeostasis, and translating this knowledge into novel therapeutic approaches to treat diseases of the intestine such as IBD and colorectal cancer. My laboratory has elucidated roles for epithelial transcription factors such as Atoh1 (Math1), Gfi1, and Spdef in development and differentiation of the intestine. Moreover, my laboratory has translated these findings to human diseases, by showing that Atoh1 and its target Spdef are tumor suppressors that are frequently silenced in colon cancers, and that these genes are essential targets of Notch inhibitory drugs. In addition to these mechanistic studies, we have recently developed novel organ culture methods to direct differentiation of human pluripotent stem cells into intestinal tissue to study intestinal development and disease, and we have used intestinal stem cell-derived organoids in quantitative assays to evaluate intestinal stem cell activity.

SELECTED PUBLICATIONS

IGNATIA B. VAN DEN VEYVER, M.D.

Professor, Departments of Obstetrics & Gynecology and Molecular and Human Genetics; Graduate Programs in Development, Disease Models & Therapeutics and Genetics & Genomics

Director, Clinical Translational Research Certificate of Added Qualification (CTR-CAQ) program

Director of Clinical Prenatal & Reproductive Genetics, Department of Molecular and Human Genetics

M.D., University of Antwerp

Resident, Obstetrics and Gynecology, Univ. of Antwerp Affiliated Hospitals, Belgium

Fellow, Maternal-Fetal Medicine, Baylor College of Medicine

Fellow, Genetics, Baylor College of Medicine

RESEARCH INTERESTS

My lab studies in mice and embryonic stem cell models how maternal effect mutations in genes that code for proteins of a complex that is essential for oocytes and embryos, cause multilocus imprinting defects that lead to recurrent pregnancy failure, early embryo arrest and birth defects in offspring. We also conduct research on the cause of Aicardi syndrome, an elusive X-linked disorder, that affects primarily girls who have eye and brain abnormalities, severe seizures and intellectual disability. For my clinical translational research, I investigate the benefits and challenges of introducing new genomic technologies, such as arrays, and non-invasive screening into prenatal diagnosis and care. We are conducting a multicenter NIH-Funded study to evaluate the clinical and diagnostic utility of trio prenatal whole genome sequencing for pregnancies with complicated fetal structural congenital anomalies.

SELECTED PUBLICATIONS

JAMES VERSALOVIC, M.D., PH.D.

Milton J. Finegold Professor of Pathology & Immunology

Professor, Departments of Pathology & Immunology; Pediatrics, Molecular and Human Genetics and Molecular Virology & Microbiology; Graduate Program in Immunology & Microbiology
Co-Director, Medical Scientist Training Program, Baylor College of Medicine
Pathologist-in-Chief and Head of Pathology, Texas Children’s Hospital
Director, Texas Children’s Microbiome Center, Texas Children’s Hospital

M.D., Ph.D., Baylor College of Medicine
Postdoc, Digestive Diseases, Baylor College of Medicine
Resident, Clinical Pathology, Massachusetts General Hospital
Clinical Fellow, Pathology, Harvard Medical School
Postdoc, Comparative Medicine, Massachusetts Institute of Technology

RESEARCH INTERESTS

The Versalovic laboratory seeks to understand the nature of the mammalian gut microbiome and how gut bacteria (and probiotics) impact mucosal immunity and intestinal inflammation. Primary clinical interests are inflammatory bowel disease and colorectal cancer. The body site of primary interest is the mammalian intestine (small and large) using mouse models, mouse and human cell lines, and human specimens. Our group links the study of bacterial genomes and metagenomes to the systems biology of the mammalian intestines.

We are actively exploring microbiome replacement and manipulation of the intestinal microbiome as models of fecal transplantation programs in humans. Our aim is to cure disease by fundamentally changing the function or composition of the intestinal microbiome to prevent or treat disease phenotypes such as IBD and cancer. We believe that this strategy represents the microbial cell and gene therapy of the future.

JAMESV@BCM.EDU

CHERYL WALKER, PH.D.

Margaret and Albert Alkek Presidential Chair in Environmental Health

Director, Center for Precision Environmental Health
Professor, Departments of Molecular & Cellular Biology, Medicine, and Molecular and Human Genetics; Graduate Programs in Cancer & Cell Biology and Genetics & Genomics
Director, NIH T32 Training Program in Precision Environmental Health

B.A. in Molecular, Cellular and Developmental Biology, University of Colorado-Boulder, 1977
Ph.D. in Cell Biology, The University of Texas Southwestern Medical School, 1984

RESEARCH INTERESTS

Our laboratory explores molecular mechanisms of disease pathogenesis, primarily cancer and metabolic diseases, including gene:environment interactions (GxE), and how the epigenome acts as a target, and determinant, of health and disease.

Environmental Determinants of Health and Disease. Our lab studies how early life environmental exposures disrupt the epigenome to increase susceptibility to adult diseases (Treviño et al., 2020). This work offers the potential to develop epigenetic biomarkers of early life exposure and/or future risk of disease, as well as new targets for intervention and disease prevention (Wang et al., 2018)

A New Function for the Epigenetic Machinery. We have also recently discovered that the epigenetic machinery that regulates chromatin also plays a key role remodeling the cytokoskeleton (Park et al., 2016; Seervai et al., 2020; Karki, et al., 2021). We are currently studying the role, and potential importance, of this new biology for the neuronal cytokoskeleton, and exploring how defects in dual-function chromatin- cytokoskeleton remodelers contribute to autism spectrum disorder and other neurological diseases such as Huntington’s Disease (Koenning, et al., 2021).

CHERYL.WALKER@BCM.EDU

SELECTED PUBLICATIONS

ROBERT A. WATERLAND, PH.D.

Professor, Departments of Pediatrics and Molecular and Human Genetics; USDA/ARS Children’s Nutrition Research Center; Graduate Program in Genetics & Genomics

Ph.D., Cornell University
Postdoc, Duke University

RESEARCH INTERESTS

In the Waterland laboratory, we work to understand how nutrition and other environmental influences on developmental epigenetics affect risk of disease later in life. Epigenetic mechanisms are established during development to regulate cell type-specific gene expression. Of these we focus on DNA methylation because it is the most stable, enabling lifelong persistence. Following up on our earlier studies on early nutritional influences at the agouti viable yellow locus (a mouse metastable epiallele) we are identifying human metastable epialleles and characterizing phenotypic consequences of individual epigenetic variation at these loci.

Another focus is the role of epigenetic dysregulation in obesity. We use mouse models to study how fetal and early postnatal exposures affect developmental epigenetics in the hypothalamus to alter lifelong energy balance.

In collaboration with experts in nutrition, computational biology, developmental neuroanatomy, and epidemiology, we apply genome-wide epigenomic profiling (Bisulfite-seq, RNA-seq, etc.) and sophisticated computational analysis. Our mouse work also employs methods to study neuroanatomical and cell type-specific epigenetic alterations.

SELECTED PUBLICATIONS

MINGSHAN XUE, PH.D.

Assistant Professor, Departments of Neuroscience and Molecular and Human Genetics; Graduate Programs in Development, Disease Models & Therapeutics; Genetics & Genomics; and Neuroscience Investigator, Jan and Dan Duncan Neurological Research Institute

Ph.D., Baylor College of Medicine
Postdoctoral fellow, University of California, San Diego

RESEARCH INTERESTS

The long-term research goal of my laboratory is to understand how dysfunction of neural circuits contributes to the pathogenesis of neurodevelopmental disorders and harness this knowledge to develop therapies. Human genetic studies of neurodevelopmental disorders continue to uncover pathogenic mutations in genes encoding synaptic proteins. However, the functional roles of these proteins in neural circuits and behaviors are poorly understood because in-depth neurological and behavioral studies in animal models are often lacking. Consequently, the pathological mechanisms underlying these synaptic disorders remain elusive and the therapeutic interventions are limited. We believe that this knowledge gap can be significantly narrowed by studying a few prioritized genes that are highly penetrant and affect a broad spectrum of neurological and neuropsychiatric features common among neurodevelopmental disorders. Thus, we are currently focusing on the mechanisms underlying circuit dysfunctions in mouse models of autism and epileptic encephalopathies, and ASO or AAV-based genetic therapies for these disorders. We collaborate with scientists from both academia and industry on multiple projects.

SELECTED PUBLICATIONS

Located in Houston, Baylor College of Medicine is internationally recognized as a premiere academic health science center. The College is known for excellence in education, research and patient care.

In 1903, the medical school began an affiliation with Baylor University that lasted until 1969, when Baylor College of Medicine became an independent institution. Originally located in Dallas, the College moved to Houston in 1943 to become the educational cornerstone of the Texas Medical Center.

Baylor College of Medicine is co-owner of Baylor St. Luke's Medical Center and has affiliations with seven additional teaching hospitals, each known for medical excellence. It also ranks consistently among the top U.S. medical schools in funding for research and development. The reputation of the College’s distinguished faculty attract graduate, medical and health professions students from across the United States and throughout the world.

Baylor College of Medicine’s vision is to improve health through science, scholarship and innovation and its mission is to create knowledge and apply science and discoveries to further education, healthcare and community service locally and globally.
The Texas Medical Center is the largest medical complex in the world and comprises more than 1,345 acres dedicated to biomedical research and care. The total acreage combined with $25 billion in gross domestic product makes the Texas Medical Center the eighth largest business district in the U.S. Among its components are three medical schools, 21 renowned hospitals, eight academic and research institutions, six nursing programs, three public health organizations, two universities, two pharmacy schools, a dental school and 13 support organizations. In addition, Rice University is within walking distance.

Although the member institutions of the TMC operate under independent direction, there is considerable inter-institutional cooperation and scientific collaboration. Frequent seminars permit students and faculty of the many institutions to benefit from the broad base of local scientific expertise.

The Texas Medical Center is home to the world’s largest children’s hospital, Texas Children’s Hospital, and the world’s largest cancer hospital, the University of Texas MD Anderson Cancer Center. The TMC has 10 million visits per year and over 106,000 people are employed at its member institutions. It has the highest concentration of life sciences professionals in the country.

Adjacent to the Museum District, the Texas Medical Center is located in one of the most attractive areas in Houston. The TMC adjoins the trees and ponds of Hermann Park, with its zoo, golf course, fountains, hike-and-bike trails and children’s areas such as playgrounds, ponds and a miniature railroad. Both the nearby University of Houston and Rice University add to the youthful, academic ambience of this section of the city. There are many cafés, bookstores, music and theater groups, film series and art exhibits.
When you think about Houston, do you envision cowboys and tumbleweeds? Well, forget those ideas. Contrary to these preconceived notions, Houston – the fourth most populous city in the United States – boasts modern industries, a thriving intellectual and cultural environment, lush vegetation, and much more.

Houston is an international city that is a leader in the arts, education and healthcare, and has a top-rated culinary scene that is continuing to gain national attention. The same vision and entrepreneurial spirit that made Houston the energy capital of the world has given rise to global companies in a wide array of industries.

Toss out any images of dusty plains, because Houston is full of trees and boasts 20,000 acres of parks, public green space and open water. The city offers an abundance of recreational activities, restaurants, shopping, cultural performances, entertainment and sporting events.

Take a quick look at what makes Houston such a great place to live, get an education and work:

The people: Houston is the fourth largest U.S. city. Thirty-seven percent are 24 or younger, and 32 percent are between ages 25-44. Houston has a multicultural population of more than 5.5 million and is considered to be the most diverse, large metropolitan area in the United States.

The low cost of living: This means affordable housing. Plus, there are no state or local income taxes. How can it get better?

The job market: Houston has an expanding economy in diverse industries. Have you checked out careers at BCM?

The weather: In the winter, you may need a light jacket but ice or snow won’t keep you from enjoying the outdoors. With an average temperature year-round of 68 degrees and average rainfall of 46 inches, you can enjoy the outdoors as much as you’d like.

The entertainment: Really, it’s impossible to be bored here. There are entertainment options for all ages, including a permanent ballet, opera, symphony and theater companies, dozens of top-notch museums and so much more. Don’t forget that Houston is home to NASA’s Johnson Space Center, too.

The food: Houston has 11,000 restaurants (and counting!), which serve every type of cuisine you could think of, both brick-and-mortar establishments and food trucks. It’s not just BBQ and Tex-Mex (though you’re missing out if you haven’t tried these cuisines here).

The sports: Sports fans, you’ll never wait too long for the next game. You’ll find plenty of professional and college sports here.

The shopping: You’ll save money with the low cost of living in Houston, but there’s no shortage of stores, malls, boutiques and more in the city!

The education: Houston offers more than 40 colleges, universities and institutes.
BAYLOR COLLEGE OF MEDICINE, AFFILIATED HOSPITALS, INSTITUTIONS AND FACILITIES
Keep up to date on all the latest news and advances from the Department of Molecular and Human Genetics at Baylor College of Medicine. Scan this QR code on your smart phone to visit our website at bcm.edu/genetics