

Intrahepatic Cholestasis of Pregnancy (ICP)

September 2024 (Replaces March 2021)

Authors: Dr. Nevert Badreldin, Dr. Christina Davidson, **Dr. Lexie Hammerquist**

Editor: Dr. Hayden Latham

Summary of Recommendations	1
Background	1
Epidemiology and Etiology	1
Pregnancy Risk	2
Evaluation	3
Table 1. Other causes of elevated bile acids	3
Physical Exam:	3
Laboratory Evaluation:	3
Diagnosis	3
Treatment	3
Pharmacologic:	3
Antenatal Fetal Surveillance	4
Algorithm 1. Diagnosis and management of ICP	5
References	6

This document utilizes gender inclusive language

Summary of Recommendations

- Serum bile acids (SBA) and liver transaminase levels with consideration of liver function analysis (total bilirubin, PT/INR, platelets) should be drawn in patients with suspected intrahepatic cholestasis of pregnancy (ICP).
- Ursodeoxycholic acid (Ursodiol) should be used as the first-line agent for pharmacologic treatment of maternal symptoms. Typical regimens include 300mg twice or three times daily or 500mg twice daily.
- Patients with the diagnosis of ICP should begin antenatal fetal surveillance at a gestational age when delivery would be performed in response to abnormal testing.
- Patients with a total bile acid level of $\geq 100 \mu\text{mol/L}$ should be offered delivery at 36 0/7 weeks given that the risk of stillbirth increases substantially around this gestational age.
- Patients with a clinical diagnosis of ICP without laboratory confirmation of elevated bile acids should not be delivered before 37 0/7 weeks gestation.

Background

Epidemiology and Etiology

In non-pregnant patients, cholestasis is often a sign of underlying liver disease including biliary tract disease and autoimmune disease. In pregnancy, it is most often self-limited and resolves after delivery. The incidence is estimated between 0.2-0.3%.¹⁻³ It is characterized by pruritus without evidence of rash (though excoriations

from scratching are often present) and is thought to be a consequence of high circulating estrogens.¹ Pruritus is most pronounced on the palms of hands and soles of feet and more severe at night. Risk factors for ICP include preexisting hepatobiliary disease, notably hepatitis C, nonalcoholic liver cirrhosis, gallstones, cholecystitis, and nonalcoholic pancreatitis, as well as history of ICP. Risk of ICP development is associated with multiple gestation, advanced maternal age, and family history suggesting a genetic component.^{1,4,5}

Pregnancy Risk

Within pregnancy, ICP poses the greatest risk to the fetus. Risks include meconium-stained amniotic fluid, preterm birth, respiratory distress syndrome, and stillbirth. The incidence of stillbirth after 37 weeks attributable to ICP is approximately 1.2% (compared to the rate for the entire United States population of 0.1-0.3% at 37 weeks).⁶⁻⁸ Stillbirth risk is thought to be correlated with total bile acid levels with significantly increased risk with bile acid levels $\geq 40 \text{ } \mu\text{mol/L}$ and highest risk for stillbirth with bile acid levels $\geq 100 \text{ } \mu\text{mol/L}$.^{9,10} The pathophysiology of stillbirth in ICP is poorly understood but has been hypothesized to be related to the development of a fetal arrhythmia or vasospasm of the placental chorionic surface vessels induced by high levels of charged bile acids.¹¹⁻¹³ Increased rates of both iatrogenic and spontaneous preterm birth have been reported in cases of ICP.⁹ Maternal risk is mainly risk of ICP recurrence in a subsequent pregnancy (up to 90%).¹⁴ However, although most cases are self-limited, patients with a history of ICP are also at increased risk for hepatobiliary diseases, chronic hepatitis, liver fibrosis, and cirrhosis. The risk appears to be greatest in the first year after diagnosis of ICP. Therefore, it is important to consider re-evaluation of liver function tests after delivery in patients with persistent pruritus after 4-6 weeks postpartum or with other signs or symptoms of hepatobiliary disease. If tests remain abnormal, subspecialist referral is recommended.^{15,16}

Evaluation

Pertinent History: Severity, aggravating and alleviating factors, onset, medical history, medications (esp. narcotic use), allergies, environmental or allergen exposure, history of intravenous drug use (and other risk factors for HIV and hepatitis), history of ICP.

Physical Exam:

Favors ICP: absence of rash, presence of excoriations.

Does not favor ICP: Presence of rashes, dark urine color, abdominal or right upper quadrant pain, jaundice.

Laboratory Evaluation:

Random total serum bile acid (SBA) testing should be performed in any patient with suspected ICP. Results are usually obtained within 7 days at both hospitals. Transaminase evaluation is also recommended as well as consideration for evaluation of liver function testing (total bilirubin, coags [PT/INR], and platelet count)

Diagnosis

The diagnosis of ICP is based on pruritic symptoms and supported by the presence of elevated total SBA. It is important to rule out other conditions with similar presentations (see [Table 1](#)).² A total bile acid level greater than the upper limit of normal in a lab that reports a reference range, or a level $>10 \mu\text{mol/L}$ is diagnostic for ICP.^{17,18} Fasting is not required prior to lab draw for total SBA. Elevated AST/ALT are sometimes seen in the setting of ICP, although this is not necessary for the diagnosis. **Approach to diagnosis and management of ICP are listed in [Algorithm 1](#).**

Bile acid levels can increase during pregnancy and may increase rapidly near term. Given that higher total serum bile acid levels are associated with adverse perinatal outcomes, repeat bile acid measurement is suggested and may guide management. **The BCM OB/Gyn Perinatal Guidelines Committee recommends repeating bile acids if the patient has worsening or refractory symptoms despite usual management.** However, weekly testing is not recommended. Treatment and delivery timing is dictated by the peak total bile acid level.¹⁹⁻²¹

Treatment

The goals of treatment are: 1) to reduce the maternal symptoms of pruritus and 2) to reduce the risk of adverse pregnancy outcomes.

Pharmacologic:

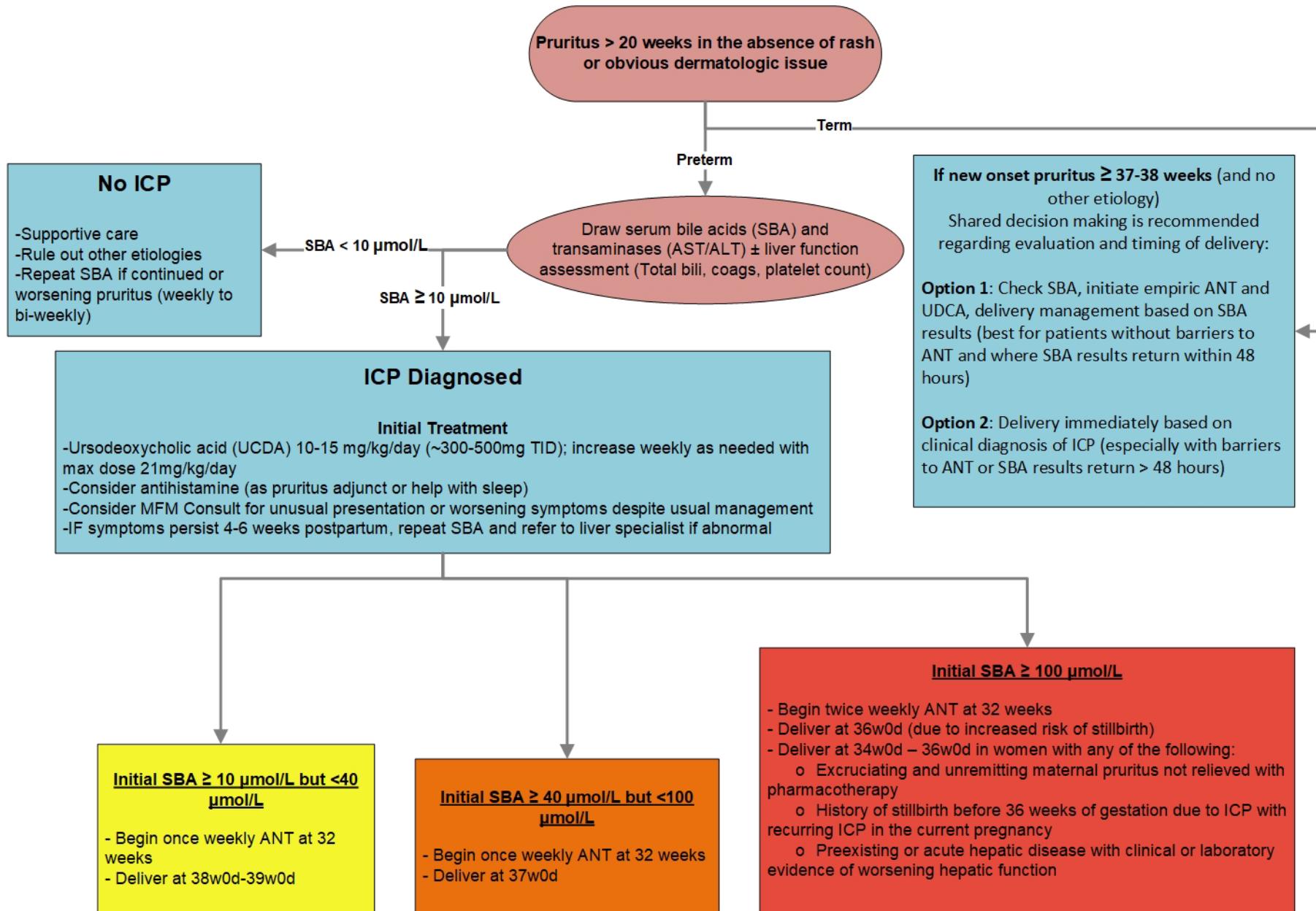
Ursodeoxycholic acid (UDCA, or Ursodiol) is the first-line treatment for ICP as it can improve maternal symptoms.²²⁻²⁴ Three meta-analyses have summarized the data from randomized trials and have reported

Table 1. Other causes of elevated bile acids

Primary biliary cholangitis
Obstructive bile duct lesion
Primary sclerosing cholangitis (associated with inflammatory bowel disease)
Drug-induced cholestasis (trimethoprim-sulfamethoxazole, phenothiazines, ampicillin)
Liver tumor
Bacterial, fungal, and viral infections (eg, Ebstein-Barr virus and cytomegalovirus)
Hepatic amyloidosis
Lymphoma and solid organ malignancies
Hepatic sarcoidosis
Autoimmune hepatitis
Idiopathic adulthood ductopenia
Total parenteral nutrition
Viral diseases
Familial intrahepatic cholestasis
Cirrhosis
Sickle cell intrahepatic cholestasis
Hepatic congestion from heart failure
Crohn disease

Society for Maternal-Fetal Medicine. SMFM Consult Series #53: Intrahepatic cholestasis of pregnancy. Am J Obstet Gynecol 2021.

benefits in improvement of maternal symptoms.²²⁻²⁴ However, data regarding improvement in perinatal outcomes are less conclusive.²²⁻²⁴


The typical starting dose of Ursodiol is 10-15 mg/kg per day which can be divided into 2 or 3 daily doses. Common regimens are 300mg twice or three times daily or 500mg twice daily. The medication is typically well tolerated although mild cases of nausea and dizziness have been reported in up to 25% of patients. A decrease in pruritus is typically noted within 1-2 weeks. If pruritus is not relieved, Ursodiol can be uptitrated to a **maximum dose of 21 mg/kg daily**. Biochemical improvement is usually seen within 3-4 weeks. Oral and topical antihistamines and topical antipruritic agents may be used as adjuncts, although these may have limited benefit.

Antenatal Fetal Surveillance

The efficacy of antepartum fetal testing to prevent stillbirth in the setting of ICP is unknown. Several studies and case reports have reported stillbirths occurring within a few days of a reactive stress test.²⁵⁻²⁹ It is theorized that testing is unhelpful because the mechanism of stillbirth is a sudden event rather than a chronic placental vascular process. However, some meta-analyses support the use of fetal surveillance, potentially due to more intensive monitoring leading to late preterm or early-term delivery.²¹⁻²³ Therefore, patients with a diagnosis of ICP should begin antenatal fetal surveillance at a gestational age when delivery would be performed in response to abnormal results or at the time of diagnosis if this is made later in gestation. **The optimal frequency of testing is listed in the antepartum surveillance perinatal guideline.**

The timing of delivery should be approached using risk-stratification based on specific factors as described in [Algorithm 1](#).

Algorithm 1. Diagnosis and management of ICP

References

References

1. LS P, A S. Pregnancy Intrahepatic Cholestasis. Treasure Island. Accessed September 8, 2024. <https://www.ncbi.nlm.nih.gov/books/NBK551503/>
2. Society for Maternal-Fetal Medicine . Electronic address pso, Lee RH, Mara G, Metz TD, Pettker CM. Society for Maternal-Fetal Medicine Consult Series #53: Intrahepatic cholestasis of pregnancy: Replaces Consult #13, April 2011. *Am J Obstet Gynecol*. Feb 2021;224(2):B2-B9. doi:10.1016/j.ajog.2020.11.002
3. Wikstrom Shemer E, Marschall HU, Ludvigsson JF, Stephansson O. Intrahepatic cholestasis of pregnancy and associated adverse pregnancy and fetal outcomes: a 12-year population-based cohort study. *BJOG*. May 2013;120(6):717-23. doi:10.1111/1471-0528.12174
4. Pataia V, Dixon PH, Williamson C. Pregnancy and bile acid disorders. *Am J Physiol Gastrointest Liver Physiol*. Jul 1 2017;313(1):G1-G6. doi:10.1152/ajpgi.00028.2017
5. Ropponen A, Sund R, Riikinen S, Ylikorkala O, Aittomaki K. Intrahepatic cholestasis of pregnancy as an indicator of liver and biliary diseases: a population-based study. *Hepatology*. Apr 2006;43(4):723-8. doi:10.1002/hep.21111
6. Henderson CE, Shah RR, Gottimukkala S, Ferreira KK, Hamaoui A, Mercado R. Primum non nocere: how active management became modus operandi for intrahepatic cholestasis of pregnancy. *Am J Obstet Gynecol*. Sep 2014;211(3):189-96. doi:10.1016/j.ajog.2014.03.058
7. MacDorman MF, Gregory EC. Fetal and Perinatal Mortality: United States, 2013. *Natl Vital Stat Rep*. Jul 23 2015;64(8):1-24.
8. MacDorman MF, Reddy UM, Silver RM. Trends in Stillbirth by Gestational Age in the United States, 2006-2012. *Obstet Gynecol*. Dec 2015;126(6):1146-1150. doi:10.1097/AOG.0000000000001152
9. Brouwers L, Koster MP, Page-Christiaens GC, et al. Intrahepatic cholestasis of pregnancy: maternal and fetal outcomes associated with elevated bile acid levels. *Am J Obstet Gynecol*. Jan 2015;212(1):100 e1-7. doi:10.1016/j.ajog.2014.07.026
10. Kawakita T, Parikh LI, Ramsey PS, et al. Predictors of adverse neonatal outcomes in intrahepatic cholestasis of pregnancy. *Am J Obstet Gynecol*. Oct 2015;213(4):570 e1-8. doi:10.1016/j.ajog.2015.06.021
11. Gorelik J, Harding SE, Shevchuk AI, et al. Taurocholate induces changes in rat cardiomyocyte contraction and calcium dynamics. *Clin Sci (Lond)*. Aug 2002;103(2):191-200. doi:10.1042/cs1030191
12. Sepulveda WH, Gonzalez C, Cruz MA, Rudolph MI. Vasoconstrictive effect of bile acids on isolated human placental chorionic veins. *Eur J Obstet Gynecol Reprod Biol*. Dec 13 1991;42(3):211-5. doi:10.1016/0028-2243(91)90222-7
13. Williamson C, Gorelik J, Eaton BM, Lab M, de Swiet M, Korchev Y. The bile acid taurocholate impairs rat cardiomyocyte function: a proposed mechanism for intra-uterine fetal death in obstetric cholestasis. *Clin Sci (Lond)*. Apr 2001;100(4):363-9.
14. Williamson C, Hems LM, Goulis DG, et al. Clinical outcome in a series of cases of obstetric cholestasis identified via a patient support group. *BJOG*. Jul 2004;111(7):676-81. doi:10.1111/j.1471-0528.2004.00167.x
15. Marschall HU, Wikstrom Shemer E, Ludvigsson JF, Stephansson O. Intrahepatic cholestasis of pregnancy and associated hepatobiliary disease: a population-based cohort study. *Hepatology*. Oct 2013;58(4):1385-91. doi:10.1002/hep.26444
16. Wijarnpreecha K, Thongprayoon C, Sanguankeo A, Upala S, Ungprasert P, Cheungpasitporn W. Hepatitis C infection and intrahepatic cholestasis of pregnancy: A systematic review and meta-analysis. *Clin Res Hepatol Gastroenterol*. Feb 2017;41(1):39-45. doi:10.1016/j.clinre.2016.07.004
17. Egan N, Bartels A, Khashan AS, et al. Reference standard for serum bile acids in pregnancy. *BJOG*. Mar 2012;119(4):493-8. doi:10.1111/j.1471-0528.2011.03245.x
18. Manzotti C, Casazza G, Stimac T, Nikolova D, Gluud C. Total serum bile acids or serum bile acid profile, or both, for the diagnosis of intrahepatic cholestasis of pregnancy. *Cochrane Database Syst Rev*. Jul 5 2019;7(7):CD012546. doi:10.1002/14651858.CD012546.pub2
19. Geenes V, Chappell LC, Seed PT, Steer PJ, Knight M, Williamson C. Association of severe intrahepatic cholestasis of pregnancy with adverse pregnancy outcomes: a prospective population-based case-control study. *Hepatology*. Apr 2014;59(4):1482-91. doi:10.1002/hep.26617

20. Glantz A, Marschall HU, Mattsson LA. Intrahepatic cholestasis of pregnancy: Relationships between bile acid levels and fetal complication rates. *Hepatology*. Aug 2004;40(2):467-74. doi:10.1002/hep.20336

21. Ovadia C, Seed PT, Sklavounos A, et al. Association of adverse perinatal outcomes of intrahepatic cholestasis of pregnancy with biochemical markers: results of aggregate and individual patient data meta-analyses. *Lancet*. Mar 2 2019;393(10174):899-909. doi:10.1016/S0140-6736(18)31877-4

22. Chappell LC, Bell JL, Smith A, et al. Ursodeoxycholic acid versus placebo in women with intrahepatic cholestasis of pregnancy (PITCHES): a randomised controlled trial. *Lancet*. Sep 7 2019;394(10201):849-860. doi:10.1016/S0140-6736(19)31270-X

23. Gurung V, Middleton P, Milan SJ, Hague W, Thornton JG. Interventions for treating cholestasis in pregnancy. *Cochrane Database Syst Rev*. Jun 24 2013;2013(6):CD000493. doi:10.1002/14651858.CD000493.pub2

24. Kong X, Kong Y, Zhang F, Wang T, Yan J. Evaluating the effectiveness and safety of ursodeoxycholic acid in treatment of intrahepatic cholestasis of pregnancy: A meta-analysis (a prisma-compliant study). *Medicine (Baltimore)*. Oct 2016;95(40):e4949. doi:10.1097/MD.0000000000004949

25. Alsulyman OM, Ouzounian JG, Ames-Castro M, Goodwin TM. Intrahepatic cholestasis of pregnancy: perinatal outcome associated with expectant management. *Am J Obstet Gynecol*. Oct 1996;175(4 Pt 1):957-60. doi:10.1016/s0002-9378(96)80031-7

26. Cui D, Zhong Y, Zhang L, Du H. Bile acid levels and risk of adverse perinatal outcomes in intrahepatic cholestasis of pregnancy: A meta-analysis. *J Obstet Gynaecol Res*. Sep 2017;43(9):1411-1420. doi:10.1111/jog.13399

27. Herrera CA, Manuck TA, Stoddard GJ, et al. Perinatal outcomes associated with intrahepatic cholestasis of pregnancy(). *J Matern Fetal Neonatal Med*. Jul 2018;31(14):1913-1920. doi:10.1080/14767058.2017.1332036

28. Lee RH, Incerpi MH, Miller DA, Pathak B, Goodwin TM. Sudden fetal death in intrahepatic cholestasis of pregnancy. *Obstet Gynecol*. Feb 2009;113(2 Pt 2):528-531. doi:10.1097/AOG.0b013e31818db1c9

29. Sentilhes L, Verspyck E, Pia P, Marpeau L. Fetal death in a patient with intrahepatic cholestasis of pregnancy. *Obstet Gynecol*. Feb 2006;107(2 Pt 2):458-60. doi:10.1097/01.AOG.0000187951.98401.f7