

Introduction

Low vitamin D levels correlate with type 2 diabetes. However, the mechanisms by which vitamin D might regulate glucose metabolism are not well studied. We previously published that vitamin D acts in the paraventricular nucleus of the hypothalamus to improve glucose tolerance. Additionally, we showed that the vitamin D receptor (VDR) is required for normal glucose tolerance when on a high-fat diet in mice. However, the molecular mechanisms by which vitamin D or VDR action might alter glucose homeostasis is unknown. Since RNA-sequencing (RNA-seq) is a powerful tool to determine gene expression, we utilized this technique to determine the RNA expression patterns of the hypothalamus after vitamin D treatment in rats.

Hypothesis

We hypothesized that vitamin D alters genes important in the regulation of glucose.

Methods

- •Male Long-Evans rats were divided into 2 different diets: High fat diet (45% fat) or standard chow for 20 weeks. •Brain cannulations performed at least 1 week prior to
- studies.
- •0.1 mcg 1,25-hydroxyvitamin D_3 (1,25D3) was given into the third ventricle (i3vt) 120 minutes prior to sacrifice. The vehicle was hydroxypropyl-β-cyclodextrin (THPB-EC; CTD, Inc). We used 4 groups: 1) HFD-fed + 1,25D3, 2) HFD-fed + vehicle, 3) chow-fed + 1,25D3,and 4) chow-fed + vehicle.
- •After sacrifice, the hypothalamus was dissected, RNA extracted, cDNA libraries created and then polyA tails added via Illumina TruSeq RNA prep Kit.
- •RNA sequencing was performed on Genomic and RNA Profiling Core at Baylor College of Medicine on Illumina HiSeq 2500 Sequencing System.
- •Data were mapped with TopHat2 onto the mouse genome build UCSCmm10. Expression was computed with Cufflinks2.
- •Genes with >1.25 fold increase were analyzed by Gene Set Enrichment Analysis.

Vitamin D Antagonizes Effects of High-fat Diet on Brain Transcriptome

Stephanie R. Sisley¹, Keisha Harrison¹, Suman Maity², Cristian Coarfa²

¹Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine ²Department of Molecular and Cellular Biology, Baylor College of Medicine

Gene Symbol	Fold Change (linear	Q-value	Name of Gene
TNFSF15	3.1591	0.0098	TNF Superfamily member 15
CRYAA	2.8835	0.0347	Crystallin Alpha A
SELV	2.6676	0.0157	Selenoprotein V
LOC100911595	2.5787	0.0301	Unknown
KCNH7	2.5447	0.0297	Potassium Voltage-Gated Channel Subfamily H Member 7
AOC3	2.3876	0.0438	Amine Oxidase, Copper Containing 3
ZFP704	2.2821	0.0201	Unknown
IL6	2.2563	0.0319	Interleukin 6
KCNH5	2.2483	0.0264	Potassium Voltage-Gated Channel Subfamily H Member 5
ERBB4	2.2208	0.0378	Erb-B2 Receptor Tyrosine Kinase 4
TNNT2	2.1904	0.0360	Troponin T2, Cardiac Type
ADRA1A	2.1534	0.0127	Adrenoceptor Alpha 1A
BEND4	2.1472	0.0320	BEN Domain Containing 4
GPRC5A	2.0806	0.0117	G Protein-Coupled Receptor Class C Group 5 Member A
ADAMTS8	2.0635	0.0285	ADAM Metallopeptidase With Thrombospondin Type 1 Motif 8
AABR06076899.1	2.0216	0.0222	Unknown
RN50_8_0646.1	2.0078	0.0350	Unknown
AABR06025587.1	1.9995	0.0314	Unknown
RGD1309903	1.9905	0.0307	Unknown
AABR06030841.1	1.9899	0.0282	Unknown
RN50_13_0822.1	1.9888	0.0228	Unknown
KCNA2	1.9194	0.0218	Potassium Voltage-Gated Channel Subfamily A Member 2
GABRB1	1.8747	0.0443	Gamma-Aminobutyric Acid Type A Receptor Beta1 Subunit
AFF2	1.8597	0.0239	AF4/FMR2 Family Member 2
BCHE	1.8540	0.0120	Butyrylcholinesterase
PPARA	1.8528	0.0001	Peroxisome Proliferator Activated Receptor Alpha
NOS1	1.8438	0.0392	Nitric Oxide Synthase 1
RGD1562276	1.8382	0.0058	Unknown
CDKL5	1.8250	0.0236	Cyclin Dependent Kinase Like 5
FAM122B	1.8194	0.0215	Family With Sequence Similarity 122B
HTR4	1.8050	0.0342	5-Hydroxytryptamine Receptor 4
KCNQ3	1.7749	0.0394	Potassium Voltage-Gated Channel Subfamily Q Member 3
FOSL1	1.7713	0.0211	FOS Like 1, AP-1 Transcription Factor Subunit
PSD3	1.7710	0.0286	Pleckstrin And Sec7 Domain Containing 3
THSD7A	1.7584	0.0277	Thrombospondin Type 1 Domain Containing 7A
SLC2A4	1.7320	0.0011	Solute Carrier Family 2 Member 4 (GLUT4)

Table 1. Top 35 genes upregulated in high-fat fed rat hypothalamic after treatment with 1,25D3.

• Vitamin D differentially regulates multiple genes involved in nerve transmission, neurotransmitter release, and multiple ion channels.

effects of high-fat diet on the brain.

Funding from federal funds from the U.S. Department of Agriculture, Agriculture Research Service under Cooperative Agreement Number 58-6250-6-001, Pediatric Endocrine Fellows Foundation (SS), This project was also supported by the Genomic and RNA Profiling Core at Baylor College of Medicine and the expert assistance of the core director, Dr. Lisa D. White, PhD.

Conclusions

Transcriptional effects of vitamin D are often in an opposite direction to the

Acknowledgements