Laising Yen Lab

Master
Heading

About the Lab

Content

RNAs have rapidly emerged as the key players in many fundamental biological processes, as well as the bridge to future medicine. The Yen laboratory is interested in the biology of RNA molecular switches (riboswitch), small catalytic RNAs, mutational RNA events in disease, and their applications in medicine. We use a variety of chemical and molecular biology strategies, in combination with mammalian cell cultures and animal models in pursuit of our goals. View information about our research areas below. 

Heading

Investigating RNA Mutations in Human Cancer for Diagnosis and Therapy

Media Component
Fig 3. Analyses of mutational events in cancer transcriptome has the potential to illuminate the underlying mechanisms of cancer formation, as well as develop useful diagnostic/prognostic tools. These include chimeric RNA, alternative splicing, etc.
Content

Transcription-induced RNA mutations include chimeric RNA, alternative splicing, alternative polyadenylation, and RNA editing. The prevalence of RNA mutations may allow the limited number of human genes to encode substantially larger number of RNAs and proteins, forming an additional layer of cellular complexity. In-depth analysis of RNA mutations in cancer has the potential to illuminate the underlying mechanisms of cancer formation, as well as develop useful tools for diagnosis and therapy. One of our focuses is to identify key driver RNA mutations in human cancer using a combined strategy of high-throughput sequencing, bioinformatics, mammalian cell cultures and animal models. Such RNA mutations, once identified, could serve as biomarkers for early cancer detection, as well as provide drug targets for cancer therapy.