Jeffrey L Noebels, M.D., Ph.D.
Picture
Jeffrey L Noebels, M.D., Ph.D.
Cullen Trust for Health Care Endowed Chair in Neurogenetics
Phone
Phone
Positions
- Cullen Trust for Health Care Endowed Chair in Neurogenetics
-
Professor Neurology, Neuroscience, and Molecular and Human Genetics
- Director
-
Blue Bird Circle Developmental Neurogenetics Laboratory
Baylor College of Medicine
- Graduate Program Faculty
-
Integrative Molecular and Biomedical Sciences;
Translational Biology and Molecular Medicine
Baylor College of Medicine
- Professor
-
Program in Translational Biology and Molecular Medicine
Baylor College of Medicine
Addresses
- Department of Neurology (Clinic)
-
Baylor College of Medicine
One Baylor Plaza, MS NB302
Houston, TX 77030
United States
Phone: (713) 798-5860
jnoebels@bcm.edu
Education
- Post-Doctoral Fellowship at Harvard University
- 01/1983 - Cambridge, Massachusetts United States
- Residency at Massachusetts General Hospital
- Boston, Massachusetts United States
- PhD from Stanford University
- 01/1977 - Stanford, CA United States
- MD from Yale University School Of Medicine
- 01/1981 - New Haven, CT United States
- BA from Reed College
- 01/1972 - Portland, OR United States
Certifications
- Neurology
- American Board of Psychiatry and Neurology
Professional Interests
- Gene control of neuronal excitability within the developing mammalian CNS
- Inherited neurological diseases
- Epilepsy
Professional Statement
The principal research strategy in the Developmental Neurogenetics Laboratory is to apply mutational analysis to learn how genes regulate neuronal excitability and network synchronization within the mammalian central nervous system. Spontaneous and transgenic mutations that express neurological phenotypes in the mouse provide a valuable opportunity to identify excitability genes and examine their role in synaptic plasticity in the developing brain.Brain wave (EEG) phenotypes emerge from altered neuronal signaling properties, and are of special interest. Six mouse mutants causing spike-wave synchronization of the neocortex have been discovered in our laboratory (tottering, lethargic, ducky, and stargazer, slow wave, and mocha) and are linked to mutations of voltage-gated calcium ion channels, AMPA receptor trafficking TARP subunits, a sodium hydrogen exchanger, and vesicular zinc trafficking. Study of these mice have led to the identification of novel members of the TARP gene family, and a new understanding of how related molecules rescue function and determine selective vulnerability within thalamocortical pathways. Other new mouse models for human epilepsy syndromes involving mutant ion channel, receptor, synaptic vesicle proteins, and transcription factors for interneuron migration are being analyzed to pinpoint the neural network and specific electrophysiological abnormalities characteristic of the human disorder. We are also exploring activity-induced changes of downstream gene expression and conditional gene silencing in epileptic brain to identify regulatory pathways that are critical mechanisms of disease progression. Some of these genes, such as those for glutamate and GABA transporters and apoptotic pathways suggest distinct mechanisms for seizure-induced excitotoxicity and cell death.
Our laboratory recently discovered that mouse models of Alzheimer’s Disease show non-convulsive cortical hyperexcitability, heralding a paradigm change in understanding the basis for cognitive disorders in familial AD. We have also identified MAPT1, the gene for tau protein, as a critical modifier of AD-linked cognitive decline and epilepsy. Other models of Long QT interval genes link arrhythmias of heart and brain, and sudden unexpected death.
At present, mutant mouse models of inherited disorders in neuronal excitability are under investigation using the molecular anatomical techniques of in situ hybridization and immunohistochemistry, quantitative analysis of seizure-activated mRNAs, in vivo and in vitro cell physiology, 2 photon imaging, and optical fluorescence measurements of ion channel activity in presynaptic terminals of mouse brain slices. These studies form the basis for development of strategies to selectively correct the tissue expression of neuronal gene errors early in development.
In collaboration with the Baylor Human Genome Sequencing Center and a $4.5 million NIH grant, our laboratory performed the first large-scale translational genomic research study examining variants in human ion channel genes. The Human Channelopathy Project revealed extensive complexity of disease-linked genes, and we are currently evaluating the contribution of SNP patterns and copy number variation in several hundred ion channel subunit genes to the complex inheritance of neurological excitability disorders such as epilepsy. A second and related large collaborative NIH funded Center project focusing on risk prediction of variants in ion channel genes linked to neurocardiac phenotypes is underway.
Websites
VIICTR Research Database
Selected Publications
- Klassen T, Davis C, Goldman A, Burgess D, Chen T, Wheeler D, McPherson J, Bourquin T, Lewis L, Villasana D, Morgan M, Muzny D, Gibbs R, Noebels J "Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy.." Cell. 2011 Jun 24;145(7):1036-48. Pubmed PMID: 21703448
- Zhu PJ, Huang W, Kalikulov D, Yoo JW, Placzek AN, Stoica L, Zhou H, Bell JC, Friedlander MJ, Krnjevic K, Noebels JL, Costa-Mattioli M "Suppression of PKR Promotes Network Excitability and Enhanced Cognition by Interferon-?-Mediated Disinhibition.." Cell. 2011 Dec 9;147(6):1384-96. Pubmed PMID: 22153080
- Qian J, Xu K, Yoo J, Chen TT, Andrews G, Noebels JL "Knockout of Zn Transporters Zip-1 and Zip-3 Attenuates Seizure-Induced CA1 Neurodegeneration.." J. Neurosci.. 2011 Jan 5;31(1):97-104. Pubmed PMID: 21209194
- Glasscock E, Yoo JW, Chen TT, Klassen TL, Noebels JL "Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy.." J. Neurosci.. 2010 Apr 14;30(15):5167-75. Pubmed PMID: 20392939
- Goldman AM, Glasscock E, Yoo J, Chen TT, Klassen TL, Noebels JL "Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death.." Sci Transl Med. 2009 Oct 14;1(2):2ra6. Pubmed PMID: 20368164
- Price MG, Yoo JW, Burgess DL, Deng F, Hrachovy RA, Frost JD, Noebels JL "A triplet repeat expansion genetic mouse model of infantile spasms syndrome, Arx(GCG)10+7, with interneuronopathy, spasms in infancy, persistent seizures, and adult cognitive and behavioral impairment.." J. Neurosci.. 2009 Jul 8;29(27):8752-63. Pubmed PMID: 19587282
- Ernst WL, Zhang Y, Yoo JW, Ernst SJ, Noebels JL "Genetic enhancement of thalamocortical network activity by elevating alpha 1g-mediated low-voltage-activated calcium current induces pure absence epilepsy.." J. Neurosci.. 2009 Feb 11;29(6):1615-25. Pubmed PMID: 19211869
- Glasscock E, Qian J, Yoo JW, Noebels JL "Masking epilepsy by combining two epilepsy genes.." Nat. Neurosci.. 2007 Dec;10(12):1554-8. Pubmed PMID: 17982453
- Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, Yoo J, Ho KO, Yu GQ, Kreitzer A, Finkbeiner S, Noebels JL, Mucke L "Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease.." Neuron. 2007 Sep 6;55(5):697-711. Pubmed PMID: 17785178
- Qian J, Noebels JL "Visualization of transmitter release with zinc fluorescence detection at the mouse hippocampal mossy fibre synapse.." J. Physiol. (Lond.). 2005 Aug 1;566:747-58. Pubmed PMID: 15919713
Log In to edit your profile