Michael Dzakovich Lab

Dzakovich Lab Publications

Master
Heading

3D printing Models

Content

All models available on our NIH 3D Repository Page 

Chandramouli, S.K. and Dzakovich, M.P. (2024) Slant Board Mounting Fixture for Seed Germination. NIH 3D. https://doi.org/10.60705/3dpx/21396.1 (3D model)

Chlouber, B. and Dzakovich, M.P. (2024) Stackable 50 mL Tube Rack (Version 1.x). NIH 3D. https://doi.org/10.60705/3DPX/21168.1 (3D model)

Chlouber, B. and Dzakovich, M.P. (2024) Stackable 15 mL Tube Rack (Version 1.x). NIH 3D. https://doi.org/10.60705/3DPX/21167.1 (3D model)

Chlouber, B. and Dzakovich, M.P. Multipurpose Universal Laboratory Tube Rack. 2023. NIH 3D. https://3d.nih.gov/entries/3DPX-020367

Chlouber, B. and Dzakovich, M.P. 6 x 4 PoxyGrid 15 mL Conical Tube Metal Rack Adapter - Orbital Shaker to Vortexer Conversion Device. NIH 3D. 2023. https://3d.nih.gov/entries/3DPX-020366

Chlouber, B. and Dzakovich, M.P. 10 x 8 PoxyGrid 15 mL Shaker Lid - Orbital Shaker to Vortexer Conversion Device. NIH 3D. 2023. https://3d.nih.gov/entries/3DPX-020365

Chlouber, B. and Dzakovich, M.P. One Gallon Pot Six Seed Punch. 2023. NIH 3D. https://3d.nih.gov/entries/3DPX-020363

Chlouber, B. and Dzakovich, M.P. Adjustable Shaking Incubator Tube Rack Holder. 2023. NIH 3D. https://3d.nih.gov/entries/3DPX-020364

Chlouber, B. and Dzakovich, M.P. 2022. Thingiverse. 15 mL Conical Tube Rack and Shaking Adapter.

Chlouber, B. and Dzakovich, M.P. 2022. Thingiverse. One Gallon Pot Six Seed Punch.

Chlouber, B. and Dzakovich, M.P. 2022. Thingiverse. Adjustable Shaking Incubator Tube Rack Holder.

Heading

Peer Reviewed Articles

Content

Dzakovich, M.P., Le, E.A., Tak, A.L., Chacko, S.K. (2024). A Comprehensive UHPLC-MS/MS and Extraction Method for Spinach (Spinacia oleracea) Flavonoids. (Submitted: Front. Plant Sci.; bioRxiv preprint: doi: 2024.09.13.612955)

Sholola, M.J., Goggans, M.L., Dzakovich, M.P., Francis, D.M., Jacobi, S.K., and Cooperstone, J.L. (2024) Discovery of steroidal alkaloid metabolites and their accumulation in pigs after short-term tomato consumption. (In Press: Food Chem. bioRxiv preprint: doi: 2024.02.05.579005)

Dzakovich, M.P., Goggans, M.L., Thomas-Ahner, J.M., Moran, N.E., Clinton, S.K., Francis, D.M., and Cooperstone, J.L. (2024) Transcriptomics and Metabolomics Reveal Tomato Consumption Alters Hepatic Xenobiotic Metabolism and Induces Steroidal Alkaloid Metabolite Accumulation in Mice. Mol. Nutr. Food Res. doi: 10.1002/mnfr.202300239 

Dzakovich, M.P., Debelo, H, Albertsen, M.C., Che, P. Todd, J.J., Simon, M.K., Zhao, Z-Y., Glassman, K., and Ferruzzi, M.G. Trait Stacking Simultaneously Enhances Provitamin A Carotenoid and Mineral Bioaccessibility in Biofortified Sorghum bicolor. (Under review: Food Research International; bioRxiv preprint: doi:10.1101/2022.08.03.501587).

Dzakovich, M.P., Francis, D.M., Cooperstone, J.L. Steroidal Alkaloid Biosynthesis is Coordinately Regulated Differs Among Tomatoes in the Red Fruited Clade. 2022. The Plant Genome. doi:10.1002/tpg2.20192

Dzakovich, M.P., Hartman, J.L., Cooperstone, J.L. (2020). A High-Throughput Extraction and Analysis Method for Steroidal Glycoalkaloids in Tomato. Front. Plant Sci. 11(6). doi: 10.3389/fpls.2020.00767

Shetge, S.A., Dzakovich, M.P., Cooperstone, J.L., Kleinmeier, D., and Redan, B.W. (2020). Concentrations of the Opium Alkaloids Morphine, Codeine, and Thebaine in Poppy Seeds Are Reduced After Thermal and Washing Treatments but Are Not Affected When Incorporated in a Model Baked Product. Ag. And Food Chem. 68(18):5241-5248. doi: 10.1021/acs.jafc.0c01681

Dzakovich, M.P., Gas-Pascual, E., Orchard, C.J., Sari, E.N., Riedl, K.M., Schwartz, S.J., Francis, D.M., Cooperstone, J.L. (2019). Analysis of tomato carotenoids: comparing extraction and chromatographic methods. J of AOAC Int. 102(4):1069-1079. doi: 10.5740/jaoacint.19-0017

Dzakovich, M.P., Gómez, C., Ferruzzi, M.G., Mitchell, C.A. (2017). Chemical and sensory properties of greenhouse tomatoes remain unchanged in response to red, blue, and far-red supplemental light from light emitting diodes. Hort. Sci. 52(12):1734-1741. doi: 10.21273/HORTSCI12469-17

Dzakovich, M.P., Ferruzzi, M.G., Mitchell, C.A. (2016). Manipulating sensory and phytochemical profiles of greenhouse tomatoes using environmentally relevant doses of ultraviolet radiation. Ag. & Food Chem. 64(36):6801-6808. doi: 10.1021/acs.jafc.6b02983

Dzakovich, M.P., Gómez, C., Mitchell, C.A. (2015). Tomatoes grown with light-emitting diodes or high-pressure sodium supplemental lights have similar fruit-quality attributes. Hort. Sci. 50(10):1498-1502. doi: 10.21273/HORTSCI.50.10.1498

Mitchell, C.A., Burr, J.F., Dzakovich, M.P., Gómez, C., Lopez, R., Hernández, R., Kubota, C., Currey, C.J., Meng, Q., Runkle, E.S., Bourget, C.M., Morrow, R.C., Both, A.J. (2015). Light-Emitting diodes in horticulture. Hort. Reviews 43(1):1-87. doi: 10.1002/9781119107781.ch01