3D printing Models
All models available on our NIH 3D Repository Page
Chandramouli, S.K. and Dzakovich, M.P. (2024) Slant Board Mounting Fixture for Seed Germination. NIH 3D. https://doi.org/10.60705/3dpx/21396.1 (3D model)
Chlouber, B. and Dzakovich, M.P. (2024) Stackable 50 mL Tube Rack (Version 1.x). NIH 3D. https://doi.org/10.60705/3DPX/21168.1 (3D model)
Chlouber, B. and Dzakovich, M.P. (2024) Stackable 15 mL Tube Rack (Version 1.x). NIH 3D. https://doi.org/10.60705/3DPX/21167.1 (3D model)
Chlouber, B. and Dzakovich, M.P. Multipurpose Universal Laboratory Tube Rack. 2023. NIH 3D. https://3d.nih.gov/entries/3DPX-020367
Chlouber, B. and Dzakovich, M.P. 6 x 4 PoxyGrid 15 mL Conical Tube Metal Rack Adapter - Orbital Shaker to Vortexer Conversion Device. NIH 3D. 2023. https://3d.nih.gov/entries/3DPX-020366
Chlouber, B. and Dzakovich, M.P. 10 x 8 PoxyGrid 15 mL Shaker Lid - Orbital Shaker to Vortexer Conversion Device. NIH 3D. 2023. https://3d.nih.gov/entries/3DPX-020365
Chlouber, B. and Dzakovich, M.P. One Gallon Pot Six Seed Punch. 2023. NIH 3D. https://3d.nih.gov/entries/3DPX-020363
Chlouber, B. and Dzakovich, M.P. Adjustable Shaking Incubator Tube Rack Holder. 2023. NIH 3D. https://3d.nih.gov/entries/3DPX-020364
Chlouber, B. and Dzakovich, M.P. 2022. Thingiverse. 15 mL Conical Tube Rack and Shaking Adapter.
Chlouber, B. and Dzakovich, M.P. 2022. Thingiverse. One Gallon Pot Six Seed Punch.
Chlouber, B. and Dzakovich, M.P. 2022. Thingiverse. Adjustable Shaking Incubator Tube Rack Holder.
Peer Reviewed Articles
Dzakovich, M.P., Le, E.A., Tak, A.L., Chacko, S.K. (2024). A Comprehensive UHPLC-MS/MS and Extraction Method for Spinach (Spinacia oleracea) Flavonoids. (Submitted: Front. Plant Sci.; bioRxiv preprint: doi: 2024.09.13.612955)
Sholola, M.J., Goggans, M.L., Dzakovich, M.P., Francis, D.M., Jacobi, S.K., and Cooperstone, J.L. (2024) Discovery of steroidal alkaloid metabolites and their accumulation in pigs after short-term tomato consumption. (In Press: Food Chem. bioRxiv preprint: doi: 2024.02.05.579005)
Dzakovich, M.P., Goggans, M.L., Thomas-Ahner, J.M., Moran, N.E., Clinton, S.K., Francis, D.M., and Cooperstone, J.L. (2024) Transcriptomics and Metabolomics Reveal Tomato Consumption Alters Hepatic Xenobiotic Metabolism and Induces Steroidal Alkaloid Metabolite Accumulation in Mice. Mol. Nutr. Food Res. doi: 10.1002/mnfr.202300239
Dzakovich, M.P., Debelo, H, Albertsen, M.C., Che, P. Todd, J.J., Simon, M.K., Zhao, Z-Y., Glassman, K., and Ferruzzi, M.G. Trait Stacking Simultaneously Enhances Provitamin A Carotenoid and Mineral Bioaccessibility in Biofortified Sorghum bicolor. (Under review: Food Research International; bioRxiv preprint: doi:10.1101/2022.08.03.501587).
Dzakovich, M.P., Francis, D.M., Cooperstone, J.L. Steroidal Alkaloid Biosynthesis is Coordinately Regulated Differs Among Tomatoes in the Red Fruited Clade. 2022. The Plant Genome. doi:10.1002/tpg2.20192
Dzakovich, M.P., Hartman, J.L., Cooperstone, J.L. (2020). A High-Throughput Extraction and Analysis Method for Steroidal Glycoalkaloids in Tomato. Front. Plant Sci. 11(6). doi: 10.3389/fpls.2020.00767
Shetge, S.A., Dzakovich, M.P., Cooperstone, J.L., Kleinmeier, D., and Redan, B.W. (2020). Concentrations of the Opium Alkaloids Morphine, Codeine, and Thebaine in Poppy Seeds Are Reduced After Thermal and Washing Treatments but Are Not Affected When Incorporated in a Model Baked Product. Ag. And Food Chem. 68(18):5241-5248. doi: 10.1021/acs.jafc.0c01681
Dzakovich, M.P., Gas-Pascual, E., Orchard, C.J., Sari, E.N., Riedl, K.M., Schwartz, S.J., Francis, D.M., Cooperstone, J.L. (2019). Analysis of tomato carotenoids: comparing extraction and chromatographic methods. J of AOAC Int. 102(4):1069-1079. doi: 10.5740/jaoacint.19-0017
Dzakovich, M.P., Gómez, C., Ferruzzi, M.G., Mitchell, C.A. (2017). Chemical and sensory properties of greenhouse tomatoes remain unchanged in response to red, blue, and far-red supplemental light from light emitting diodes. Hort. Sci. 52(12):1734-1741. doi: 10.21273/HORTSCI12469-17
Dzakovich, M.P., Ferruzzi, M.G., Mitchell, C.A. (2016). Manipulating sensory and phytochemical profiles of greenhouse tomatoes using environmentally relevant doses of ultraviolet radiation. Ag. & Food Chem. 64(36):6801-6808. doi: 10.1021/acs.jafc.6b02983
Dzakovich, M.P., Gómez, C., Mitchell, C.A. (2015). Tomatoes grown with light-emitting diodes or high-pressure sodium supplemental lights have similar fruit-quality attributes. Hort. Sci. 50(10):1498-1502. doi: 10.21273/HORTSCI.50.10.1498
Mitchell, C.A., Burr, J.F., Dzakovich, M.P., Gómez, C., Lopez, R., Hernández, R., Kubota, C., Currey, C.J., Meng, Q., Runkle, E.S., Bourget, C.M., Morrow, R.C., Both, A.J. (2015). Light-Emitting diodes in horticulture. Hort. Reviews 43(1):1-87. doi: 10.1002/9781119107781.ch01